АШЫМКАНОВ К.Ш.

ВНУТРИСЕЗОННЫЕ ИЗМЕНЕНИЯ РАДИОИЗЛУЧЕНИЯ ОБЛАЧНОЙ АТМОСФЕРЫ В ММД

Институт физики НАН Кыргызской республики, Бишкек

Межсезонные вариации радиофизических характеристик облачной атмосферы для условий Северного Кыргызстана были ранее обсуждены в [6]. При этом было показано, что существенный вклад вносят и внутрисезонные изменения облачности в каждом конкретном случае пункта наблюдений.

В зависимости от высоты нижней границы облаков их относят к одному из трех ярусов: верхнему (высота более 6км), среднему (высота от 2км до 6км) или нижнему (высота менее 2км).

Получено, что из облаков верхнего яруса наиболее часто в Бишкеке отмечаются перистые (Ci), их среднемесячная повторяемость в июле составляет 30%, а в январе 45%. причем в теплый период года максимальная повторяемость Ci наблюдается в 19.00 часов, а в холодный - в 13.00 часов. В Чолпон-Ате Ci так же наиболее распространенные из облаков верхнего яруса. В январе их повторяемость составляет 28 %, а в июле 30%.

Из облаков среднего яруса наибольшая повторяемость у высоко-кучевых. Высоко-кучевые облака (Ас) — форма облаков, наиболее характерная для горной страны, так как орография и высокий уровень конденсации обусловливают их образование. Повторяемость Ас в течение всего года в Бишкеке высокая: в январе и июле она составляет 32-33%. Причем максимальная она в срок 7.00 часов (в среднем за год 39%). В Чолпон-Ате повторяемость Ас несколько ниже: 18% в январе и 26% в июле.

В Бишкеке, в силу того, что он часто находится под воздействием антициклона, повторяемость высоко-слоистых (As) облаков зимой не превышает 24%, а в Чолпон-Ате – 14%.

В течение всего летнего периода, когда уровень конденсации поднимается высоко и над территорией Кыргызстана преобладают условия летней термической депрессии, высоко-слоистые облака появляются редко. Повторяемость их и в Бишкеке и в Чолпон-Ате в июле колеблется в пределах 4-7%.

Из облаков нижнего яруса наибольшей повторяемостью отличаются слоисто-кучевые (Sc). Они имеют ярко выраженный годовой ход с максимумом в летнее время, образуясь к вечеру, как облака хорошей погоды при растекании кучевых облаков. Среднеиюльская повторяемость Sc в Бишкеке 35%, причем в вечернее время она достигает 65%. В холодное полугодие, вследствие затухания конвекции, повторяемость слоисто-кучевых облаков уменьшается. Зимой они чаще всего наблюдаются в виде тонкого подинверсионного слоя, обычно в предутренние часы. В январе их повторяемость составляет 16%. Интересно отметить, что в Чолпон-Ате наблюдается обратный годовой ход слоисто-кучевых облаков (см. табл. 1.6). Максимум приходится на зимние месяцы – в январе 62% (самая большая повторяемость по Кыргызстану). Минимум бывает весной и осенью и составляет 24-25%.

Слоистые облака (St) в связи с большой сухостью воздуха не типичны для Кыргызстана. Повторяемость их небольшая, чаще всего они образуются в утренние часы. Максимального развития они достигают в холодное полугодие. В Бишкеке и Чолпон-Ате в январе до 8%. В летнее время слоистые облака в Бишкеке почти не наблюдаются – в июле 0,6%. В Чолпон-Ате, вследствие влияния озера Иссык-Куль, их повторяемость доходит до 3%. С годовым ходом повторяемости циклонов и связанных с ними фронтов согласуется годовой ход слоисто-дождевых облаков (Ns) и разорванно-дождевых (Frnb). Наибольшей повторяемости они достигают в переходный период. В Бишкеке в марте 18 и 11% соответственно.

А в Чолпон-Ате максимальная повторяемость слоисто-дождевых и разорвано-дождевых облаков даже в переходный период не превышает 6%. В летние месяцы их повторяемость резко сокращается и составляет менее 2-4% в обоих городах.

Для исследования внутрисезонных вариаций излучения облачной атмосферы была произведена выборка данных расчета по трем типам облаков — Ас, Sc и Ci. При этом, результаты расчетов излучения были для каждого сезона представлены в хронологическом порядке. Например, для лета — это первые дни с облачностью одного из трех типов в июне месяце, затем в июле и августе. Для зимних месяцев — это декабрь, январь и февраль. По Бишкеку выборка дала десять дней с облачностью указанных типов, из них 4 дня в июне, 3 дня в июле и 3 дня в августе. В качестве внутрисезонного хода изменений излучения облачности в виде непрерывной линии представлен на рис. 1.

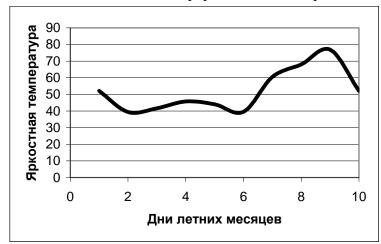


Рис. 1. Внутрисезонные изменения Тя облачной атмосферы Бишкека (лето).

Как видно из графика минимальные значения варьируют от 40 до 43 K, а максимальные от 70 до 78 K.Зимой в Бишкеке наибольшую вероятность появления имеют облака: Ac – 31%, Sc – 16%, Ci – 45%. Результаты исследования внутрисезонных вариаций излучения зимних облаков Бишкека (18 дней) показаны на рис. 2.

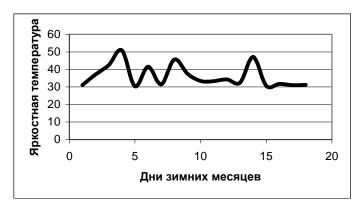


Рис. 2. Внутрисезонные изменения Тя облачной атмосферы Бишкека (зима)

Видно, что амплитуды вариаций яркостных температур зимой меньше (минимум – 30К, а максимум – 52К). Уменьшение вариаций излучения, по-видимому, объясняется тем, что зимой малы значения водозапаса атмосферы.

Внутрисезонные вариации поглощения в облаках также испытывают значительные изменения. В качестве примера на рис.3. показан ход изменений поглощения облачной атмосферы Бишкека для дней летних месяцев. Максимальные значения поглощения летом варьируют в пределах от 0,26 до 0,32 непера, а минимальные от 0,16 до 0,18 непера. Зимой вариации поглощения значительно меньше.

Это видно на рис. 4.

Зимой вариации имеют максимальные значения от 0,19 до 0,21 непера, а минимальные – от 0,12 до 0,14 непера.

Выполненные расчеты внутрисезонных изменений излучения и поглощения облачной атмосферы для условий Бишкека, Чолпон-Аты и перевала Туя-Ашуу позволяют определить диапазон вариаций радиофизических параметров атмосферы. При этом минимальные значения яркостной температуры равны: для лета — 40К, для зимы — 30К, а максимальные: для лета — 78К, для зимы — 52К. Также определены минимальные величины поглощения для лета — 0,17 непера, для зимы — 0,12 непера. Максимальные величины поглощения летом равны — 0,32 непера, для зимних месяцев — 0,21 непера. Получены угловые, высотные и сезонные зависимости излучения и поглощения 3-х типов наиболее вероятных облаков для погодных условий Северного Кыргызстана на длине волны 3,3 мм. В длинноволновой части миллиметрового диапазона исследования были выполнены ранее в работах [1,2,3,4].

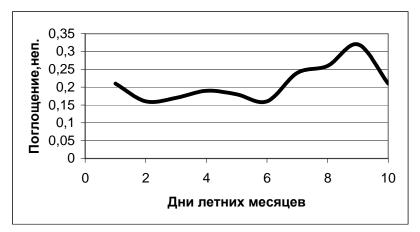


Рис 3. Внутрисезонные изменения поглощения атмосферы Бишкека (лето).

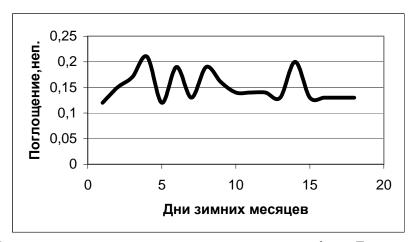


Рис 4. Внутрисезонные изменения поглощения атмосферы Бишкека (зима).

Как уже было отмечено, исследование излучения и поглощения облачной атмосферы Северного Кыргызстана были представлены в отчетах и обсуждались в научных изданиях [5,6].

Литература

- 1. Андреев Г.А. и др. Радиотехника и электроника. 2002. т. 47. №7.
- 2. Заболотный В.И. и др. Известия ВУЗов, Радиофизика, 1980, .т.23.
- 3. Башаринов А.Е. и др. Исследования радиоизлучения облачной атмосферы в ММ и СМ диапазонах волн. Труды ГГО. 1968. вып.222.

- 4. Кутуза Б.Г. и др. Радиотепловое излучение облаков. Радиотехника и электроника. 1978.т.23. с.1792-1806.
- 5. Отчет о НИР «Пассивная ретрансляция радиотелевизионных сигналов на горных трассах и радиогеофизический мониторинг параметров окружающей среды», Бишкек, 2004, 115 с.
- 6. Ашымканов К.Ш. и др. Вестник КНУ им. Ж.Баласагына. 2005. вып. 3. серия 3. с.158-161