ПЕРЕДАЧА ЭНЕРГИИ УДАРА ЧЕРЕЗ ИНСТРУМЕНТ В ПЛАСТИНУ

В.Э. Еремьянц, В.В. Ню

Приведено математическое описание волновых процессов, протекающих при продольном ударе упругим стержнем по другому стержню, опирающемуся на пластину. Установлена зависимость коэффициента передачи энергии удара в пластину от параметров элементов ударной системы.

Ключевые слова: удар; боек; инструмент; пластина; коэффициент передачи энергии.

В ряде работ, например [1–3], развивалась теория виброударной очистки пластин от различного рода отложений. При этом рассматривалась ударная система, состоящая из жесткого бойка с податливой сферической ударной поверхностью и рабочего инструмента, выполненного в виде упругого стержня, опирающегося на обрабатываемую поверхность пластины. Такие ударные системы характерны для кривошипно-коромысловых и пневматических виброударных механизмов. Существенно меньше работ посвящено рассмотрению ударных систем гидравлических виброударных механизмов, которые имеют ряд преимуществ перед пневматическими механизмами. Эти преимущества заключаются в большем коэффициенте передачи энергии удара

36

Вестник КРСУ. 2013. Том 13. № 7

в обрабатываемый объект, меньших напряжениях в элементах ударной системы, лучших эргономических и экологических характеристиках машин.

Впервые ударная система, близкая к системе гидравлической машины для виброударной очистки поверхностей, была рассмотрена в работе [4]. Модель этой системы состояла из упругого бойка ударной машины 1 (рисунок 1), который наносит удар по инструменту 2, опирающемуся на пластину 3. Принималось, что все элементы системы стальные с одинаковыми модулями упругости E, плотностями ρ и коэффициентом Пуассона μ . Боек и инструмент имеют одинаковые диаметры, а, следовательно, и одинаковые ударные жесткости, причем длина инструмента намного больше длины бойка. Торцы соударяющихся тел абсолютно плоские и параллельные друг другу.

В этом случае при ударе в инструменте генерируется волна деформации прямоугольной формы с амплитудой усилий и длительностью, которые определяются по формулам

$$P = 0.5 CV_0, T = 2 l/a$$

где C – ударная жесткость бойка и инструмента, $C = \rho a S; a$ – скорость распространения волны деформации в бойке и инструменте, $a = \sqrt{E / \rho}; S$ – площадь поперечного сечения бойка и инструмента; l – длина бойка; V_0 – скорость соударения.

С использованием этой модели в [4] определены усилия в контактном сечении инструмента с пластиной при действии на него начальной волны деформации и найдены параметры отраженной от пластины волны.

Это решение было повторено впоследствии в работе [1]. Однако в этих работах не рассматривался вопрос об эффективности передачи энергии удара через инструмент в обрабатываемый объект и описывался частный случай, когда ударные жесткости бойка и инструмента одинаковы.

В данной статье решается более общая задача, когда диаметр бойка отличен от диаметра инструмента, при этом основное внимание обращается на влияние параметров ударной системы на эффективность передачи энергии удара через инструмент в обрабатываемый объект.

В математической модели рассматриваемой системы (рисунок 1) движение сечений обоих стержней описывалось одномерными волновыми уравнениями:

$$\frac{\partial^2 u_j}{\partial t^2} - a^2 \frac{\partial^2 u_j}{\partial x^2} = 0, \qquad (1)$$

где $u_j = u_j(x, t)$ – перемещения сечений бойка (*j*=1) или инструмента (*j*=2); x – координата сечения; t – время.

Решение волновых уравнений отыскивалось в форме Даламбера:

 $u_{i}(x, t) = f_{ii}(at - x) + \varphi_{ii}(at + x), \qquad (2)$

где $f_{ji}(at - x)$, $\varphi_{ji}(at + x) - функции, описываю$ щие перемещения сечений в волнах деформации,распространяющихся в стержнях соответственнов положительном и отрицательном направленияхоси*x*. Вид этих функций находится из граничныхусловий задачи.

Известно, что при ударе по инструменту упругим бойком, ударная жесткость которого больше ударной жесткости инструмента, в последнем формируется волна деформаций ступенчатой формы (рисунок 2) с длительностью каждой ступени T - 2l/a и амплитудой усилий, определяемой по формуле

$$P_{2n} = P_{21} q_1^{n-1}, (3)$$

где n – номер ступени; P_{21} – амплитуда первой ступени волны,

$$P_{21} = -\frac{C_1 C_2}{C_1 + C_2} V_0, \tag{4}$$

Вестник КРСУ. 2013. Том 13. № 7

 C_1, C_2 – ударные жесткости бойка и инструмента,

$$q_1 = \frac{C_1 - C_2}{C_1 + C_2} = \frac{r_{12} - 1}{r_{12} + 1}, \quad r_{12} = \frac{C_2}{C_1}$$

Если ударная жесткость бойка равна или меньше ударной жесткости инструмента, то в нем формируется волна деформации прямоугольной формы с амплитудой усилий, определяемой по формуле (4).

Функции f_{2n} связаны с усилиями P_{2n} соотношениями

$$f_{2n}'(at-x) = -\frac{P_{2n}}{E_2 S_2}.$$
 (5)

Волна, описываемая функцией $f_{2n}(at - x)$ достигая обрабатываемого объекта, отражается от него в виде волны $\varphi_{2n}(at + x)$. С этого момента перемещения в сечениях, охваченных волнами f_{2n} и φ_{2n} , описываются функцией

$$u_{2n}(x, t) = f_{2n}(at - x) + \varphi_{2n}(at + x).$$
(6)

В этом решении функция f_{2n} известна, а функция φ_{2n} находится из граничных условий в контакте инструмента с обрабатываемой поверхностью.

Если за начало оси *х* принять контактное сечение, то граничные условия запишутся так:

$$E_2 S_2 \frac{\partial u_2(0,t)}{\partial x} + P_k(t) = 0, \qquad (7)$$

где P_k – усилия в контактном сечении инструмента и пластины, зависящие от контактной характеристики.

В данной работе в качестве обрабатываемой поверхности рассматривается поверхность пластины. При этом контактная характеристика инструмента и пластины при сферическом торце инструмента имеет вид [1]

$$P_{k}(t) = c \left[u_{2}(0, t) - w(t) \right],$$
(8)

где w(t) – прогиб пластины в точке контакта с инструментом; c – приведенный коэффициент жесткости, определяемый по формулам, выведенным в работе [1]. Если пластина достаточно большая в плане и волны деформаций, отраженные от её границ не оказывают влияния, по крайней мере, на первое взаимодействие инструмента с пластиной, то можно принять [1]:

$$w(t) = \frac{1}{8\sqrt{Dm_0}} \int_{0}^{t} P_k(t) dt,$$
 (9)

где D – цилиндрическая жесткость пластины, $D = E\delta^3/12(1 - \mu^2); m_0$ – масса одного квадратного метра пластины, $m_0 = \rho\delta$, – толщина пластины.

Подстановка выражений (6), (8), (9) в граничное условие (7) приводит к дифференциальному уравнению вида

$$\Psi'_{2n}(\zeta) + s\Psi_{2n}(\zeta) = \Phi'_{2n}(\zeta) - (b - \beta) \Phi_{2n}(\zeta),$$
 (10)
где

$$\xi = at, \ \Phi_{2n}(\xi) = f'_{2n}(\xi), \ \Psi_{2n}(\xi) = \varphi'_{2n}(\xi)$$

38

$$\Psi'_{2n}(\xi) + s\Psi_{2n}(\xi) = \Phi'_{2n}(\xi) - (b - \beta) \Phi_{2n}(\xi)$$
$$b = \frac{c}{ES_2}, \quad \beta = \frac{c}{8a\sqrt{Dm_a}}, \quad s = b + \beta.$$

Из выражения (5) следует:

$$\Phi_{2n}(\xi) = -\frac{P_{2n}}{ES_2}, \quad \Phi'_{2n}(\xi) = 0,$$

тогда уравнение (10) принимает вид

$$\Psi_{2n}'(\xi) + s\Psi_{2n}(\xi) = -(b - \beta)\frac{P_{2n}}{ES_2}.$$
 (11)

Решением этого уравнения является функция

$$\Psi_{2n}(\xi) = Ae^{-s\xi} - \frac{(b-\beta)}{(b+\beta)} \cdot \frac{P_{2n}}{ES_2}.$$
 (12)

Для первой ступени начальной волны деформации $f_{21}(\zeta)$, распространяющейся по инструменту в сторону пластины, постоянная *A* находится из начального условия $P_{k1}(0) = 0$, которое можно представить в виде

 $ES_{2}\left[-\Phi_{21}\left(0\right)+\Psi_{21}(0)\right]=0.$

Подставляя в него соответствующие функции, найдем

$$A = -\frac{P_{21}}{ES_2} \cdot \frac{2b}{(b+\beta)}$$

Между параметрами *b* и β существует следующая взаимосвязь:

$$\beta = b \chi v^2, \quad \chi = \frac{\pi}{16} \sqrt{3(1-\mu^2)}, \quad v = \frac{d_2}{\delta}.$$

Для стали с коэффициентом Пуассона, равным 0,3, можно принять: $\chi = 0,3244$. С учетом этого решение (12) принимает вид

$$\Psi_{21}(at+x) = -\frac{P_{21}}{ES_2(1+\chi v^2)} \Big(\chi v^2 - 1 + 2e^{-s(at+x)}\Big).$$

Усилия в отраженной волне определяются зависимостью

$$P_{om}(x,t) = ES_2 \Psi_{21}(at+x) = -\frac{P_{21}}{(1+\chi v^2)} \Big(\chi v^2 - 1 + 2e^{-s(at+x)}\Big), (13)$$

а усилия в контакте инструмента с пластиной –

$$P_k(t) = P_{om}(0,t) + P_{21}(0,t) = \frac{2P_{21}}{1+\chi v_{22}^2} (1-e^{-sat}). \quad (14)$$

Показатель степени *sat* может быть представлен в следующем виде:

$$sat = saT \cdot \frac{t}{T} = \frac{2(1 + \chi v^2)}{\Theta r_{12}} \cdot \frac{t}{T},$$

где Θ – безразмерное соотношение, связывающее параметры бойка (массу *m*), инструмента (ударную жесткость C_2) и контактной характеристики (приведенный коэффициент жесткости *c*)

$$\Theta = C_2^2 / cm$$

На рисунке 3 показаны графики функций (13), (14), построенные при следующих исходных данных: $d_1 = d_2 = 28$ мм, l = 388 мм, L >> l, $E = 20, 4 \cdot 10^{10}$ Па, $\rho = 7850$ кг/м³, a = 5135 м/с, $\mu = 0$, $V_0 = 3,5$ м/с.

Кривая 1 на этих графиках соответствует толщине пластины 6 мм, кривая 2-8 мм и кривая 3–9,8 мм. В первом случае $\chi v^2 = 7,065, \Theta = 1,176;$ во втором $\chi v^2 = 3,974$, $\Theta = 1,0$ и в третьем случае $\chi v^2 = 2,648, \Theta = 0,902.$

Из уравнения (13) и рисунка 3 следует, что при $t = 0 P_{om} = -P_{21}$, т. е. в начальный момент времени, волна отражается от пластины без изменения амплитуды, но с противоположным знаком, т. е. волной растяжения. Затем усилия растяжения в волне резко уменьшаются и при t/T> 0,4 практически остаются постоянными. В конце действия на пластину начальной волны (t = T) усилие в контактном сечении достигает величины

$$P_k(T) = \frac{2P_{21}}{1 + \chi v^2} (1 - e^{-saT}).$$
(15)

Энергия в прямой и отраженной волнах находится из следующих соотношений:

$$A_{np} = \frac{P_{21}^2 T}{C_2}, \ A_{om} = \frac{1}{C_2} \int_0^t P_{om}^2 dt,$$

а коэффициенты передачи энергии бойка в инструмент η_1 и из инструмента в пластину η_2 определяются по формулам:

 $\eta_1 = A_{np}/A_0, \ \eta_2 = 1 - A_{om}/A_{np},$ где A_0 – кинетическая энергия бойка в начальный момент удара, $A_0 = mV_0^2/2$. Подставляя в эти формулы соответствующие выражения, получим:

$$\eta_1 = \frac{4r_{12}}{\left(r_{12}+1\right)^2},\tag{16}$$

$$\eta_{2} = \frac{4\chi v^{2}}{\left(1 + \chi v^{2}\right)^{2}} \left[1 - \frac{\Theta r_{12}}{4\chi v^{2} \left(1 + \chi v^{2}\right)} \times \left(2\chi v^{2} - 1 + 2\left(\chi v^{2} - 1\right)\exp\left(-\frac{2\left(1 + \chi v^{2}\right)}{\Theta r_{12}}\right) - \exp\left(-\frac{4\left(1 + \chi v^{2}\right)}{\Theta r_{12}}\right) \right] \right]$$

Из работы [1] следует, что при толщине пластины меньше 12,5 мм и диаметре инструмента меньше 50 мм выполняется условие saT > 6 и экспоненциальными членами в последнем выражении можно пренебречь, записав его в более простом виле

$$\eta_{2} = \frac{4\chi v^{2}}{\left(1 + \chi v^{2}\right)^{2}} \left(1 - \frac{\Theta r_{12}}{4\chi v^{2}} \frac{\left(2\chi v^{2} - 1\right)}{\left(1 + \chi v^{2}\right)}\right).$$
(17)

Общий коэффициент передачи энергии бойка в пластину определится как

$$\eta = \eta_1 \cdot \eta_2 = \frac{16r_{12}\chi v^2}{\left(r_{12} + 1\right)^2 \left(1 + \chi v^2\right)^2} \left(1 - \frac{\Theta r_{12}}{4\chi v^2} \frac{\left(2\chi v^2 - 1\right)}{\left(1 + \chi v^2\right)}\right).$$
(18)

Из полученных соотношений следует, что коэффициент передачи энергии бойка в пластину зависит от безразмерного параметра Θ , отношения ударных

жесткостей бойка и инструмента r_{12} , и от отношения диаметра инструмента к толщине пластины *v*.

В таблице 1 приведены значения коэффициента передачи энергии бойка в инструмент при различных отношениях ударных жесткостей бойка и инструмента. Из данных таблицы видно, что для обеспечения коэффициента передачи энергии η_1 не менее 0,99 величина r₁₂ должна лежать в диапазоне

$$0,82 \le r_{12} \le 1,22.$$

Таблица 1 – Значения коэффициента передачи энергии бойка в инструмент

<i>r</i> ₁₂	0,7	0,8	0,9	1,0	1,1	1,2	1,3	1,4
η_1	0,969	0,988	0,997	1,0	0,998	0,992	0,983	0,972

На рисунке 4 приведены графики зависимости η_2 от величины χv^2 при различных значениях Θr_{12} . Кривые 1, 2, 3, 4 на этом рисунке соответствуют значениям Θr_{12} , равным 0,25, 0,5, 0,75, 1,0. На графиках видно, что коэффициент передачи энергии η_2 тем больше, чем меньше значение Θr_{12} . Следовательно, для повышения эффективности передачи энергии удара в пластину следует стремиться к уменьшению параметров Θ и r_{12} . При этом максимальное значение η_2 достигается в диапазоне изменения χv^2 от 0,75 до 1,5. С увеличением χv^2 свыше этого значения коэффициент передачи энергии удара в пластину интенсивно снижается.

В таблице 2 приведены результаты расчета коэффициента передачи энергии η_2 по исходным

Вестник КРСУ. 2013. Том 13. № 7

данным, представленным выше. Там же указаны экспериментальные значения этого коэффициента, полученные в работе [5] и расхождения теоретических и экспериментальных результатов.

Таблица 2 – Значения коэффициента передачи энергии начальной волны деформации в пластину η_2

Толщина пластины δ , мм	6	8	9,8
Теория	0,716	0,586	0,403
Эксперимент	0,707	0,445	0,352
Расхождение, %	12,7	31,7	14,4

Из данных таблицы видно, что значения коэффициента передачи энергии, полученные теоретически, выше экспериментальных. Одной из причин этого расхождения является то, что фактическая энергия отраженной волны выше, а прямой волны ниже, чем полученная в экспериментах. Прямая волна после её регистрации тензорезистором прошла по инструменту до контактного сечения с пластиной расстояние 560 мм, и её фактическая энергия в результате внутреннего трения в материале уменьшилась по сравнению с измеренной.

Отраженная от пластины волна также прошла от контактного сечения до тензорезистора расстояние 560 мм, и её энергия в момент отражения была больше измеренной. Если к тому же учесть, что погрешность определения энергий в эксперименте лежала в пределах 10 %, то можно отметить удовлетворительное совпадение результатов расчета и эксперимента для пластин толщиной 6 и 9,8 мм. Результат, полученный для пластины толщиной 8 мм, требует проверки, поскольку в этом случае получены большие расхождения и при ударе по инструменту бойком с другими параметрами.

Экспериментальные данные показывают также, что отраженная от пластины волна растяжения, достигая верхнего торца инструмента, приводит к его отходу от бойка. С этого момента времени волна отражается от верхнего торца инструмента как от свободного с противоположным знаком, т. е. в виде волны сжатия. Эта волна, достигая пластины, вновь отдает в неё часть своей энергии. Таких повторных взаимодействий при толщине пластины от 6 до 10 мм может быть три-четыре. Поэтому задачей дальнейших исследований является описание передачи энергии удара в пластину при многократном воздействии на неё волн деформаций, отраженных от торцов инструмента.

Литература

- Еремьянц В.Э. Динамика ударных систем. Моделирование и методы расчета / В.Э. Еремьянц // Palmarium academic publishing. Саарбрукен. Германия, 2012. 586 с.
- Еремьянц В.Э. К задаче о продольном ударе по стержню, опирающемуся на пластину / В.Э. Еремьянц, Л.Т. Панова, А.А. Слепнев // Проблемы машиностроения и надежности машин. М.: РАН. 2007. № 4. С. 58–63.
- 3. *Еремьянц В.Э.* Расчет характеристик процесса виброударной очистки поверхностей / В.Э. Еремьянц, Л.Т. Панова, А.А. Асанова // Проблемы машиностроения и надежности машин. 2012. № 6. М.: РАН. С. 63–70.
- Еремьянц В.Э. Волновые процессы в ударной системе "боек-волновод-пластина" при равных ударных жесткостях бойка и волновода / В.Э. Еремьянц, Е.Г. Климова // Вестник КРСУ. 2006. Т. 6. № 5. С. 92–96.
- 5. *Еремьянц В.Э.* Волновые процессы в волноводе ударной системы "боек-волновод-пластина" / В.Э. Еремьянц // Вестник УлГТУ. 2011. № 1. С. 35–38.