УДК 552.23:548.734

ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ СТРУКТУРНОГО СОСТОЯНИЯ ГОРНЫХ ПОРОД РЕНТГЕНОГРАФИЧЕСКИМ МЕТОДОМ

Р.М. Султаналиева

Приведены результаты определения параметров структуры горных пород рентгенографическим методом, которые позволяют управлять их деформационными и прочностными свойствами для решения задач при добыче и переработке полезных ископаемых.

Ключевые слова: структура; параметры; рентгенографический метод; дифракция; горная порода; минерал; термообработка.

DETERMINATION OF THE PARAMETERS A STRUCTURAL STATE OF ROCKS X-RAY METHOD

R.M. Sultanalieva

The article presents the results of determination parameters of rocks structure by x-ray method which allow to control their deformation and strength properties for the solution of tasks at production and processing of minerals.

Keywords: structure; parameters; radiographic method; diffraction; rock; mineral; heat treatment.

Результаты рентгенографического метода исследований параметровструктурного состояния позволяют управлять деформационными и прочностными свойствами горных пород и минералов для решения задач при добыче и переработке полезных ископаемых,создании строительных материалов.

Рентгенографическое определение деформаций и напряжений в минералах позволяет изучить природу физических процессов, протекающих в горной породе, подвергающейся воздействию внешних полей (механических, тепловых и т. д.).

В основу изучения атомной структуры минералов положено явление дифракции в них рентгеновских лучей.

Если направить пучок рентгеновских лучей на скопление атомов, то их электронные оболочки будут взаимодействовать с падающей волной и рассеивать её в пространство [1]. Направление распространения волны обычно задается вектором \overline{k} , модуль которого равен

$$\left|\overline{k}\right|=2\pi/\lambda,$$

Дифракцию на минерале можно интерпретировать как "отражение" луча плоскостями кри-

где λ – длина волны.

сталлической решетки под вполне определенными фиксированными углами падения и отражения.

Это наблюдается потому, что "отражение" происходит лишь тогда (под тем углом), когда волны, рассеянные параллельными атомными плоскостями, оказываются в фазе и усиливают друг друга.

В этом случае разность хода при рассеянии от соседних плоскостей равна целому числу n длин волн λ :

$$n\lambda = 2d_{hkl}\sin\theta.$$
 (1)

Формула (1) – закон Вульфа–Брэгга, связывающий направление отражения рентгеновского монохроматического излучения, характеризуемое углом θ , с межплоскостным расстоянием d_{hkl} в решетке (n – порядок отражения). Если это условие не выполняется, то из-за наличия в кристалле очень большого количества плоскостей, возникающих при отражении от них разности фаз, приводят к полному гашению рассеянных пучков при любых углах (рисунок 1).

Формула Вульфа–Брэгга показывает, что дифрагированные пучки для данного d_{hkl} могут быть получены в монохроматическом излучении (т. е. при постоянной λ) только за счет изменения ориентации кристалла, т. е. углов θ .

Вестник КРСУ. 2017. Том 17. № 8

Название и место отбора породы	Состояние породы	Номер образца	Модуль упругости, (Е)×10 ⁻⁵ МПа	Коэффициент Пуассона, µ
1	2	3	4	5
Песчаник (Рогун)	Исходное	2	0,39	0,20
	После термообр.	1	0,28	0,30
	После термообр.	4	0,33	0,30
Гранит (Кыртабылга)	Исходное	10	0,85	0,25
	После термообр.	6	0,10	0,30
Мрамор (Новоросийск)	Исходное	12	0,76	0,18
	После термообр.	7	0,30	0,40
Кварц (Восточ. Коунрад,	Исходное	13	0,75	0,23
шх.6, г. 220)	Исходное	14	0,75	0,23
Гранит (Восточ. Коунрад,	Исходное	15	0,43 0,43	0,27
шх.6, г.150)	Исходное	16		0,27

Таблица 1 – Деформационные характеристики горных пород

Рисунок 1 – Схема формирования отражения от атомных плоскостей

Расчет параметров тонкой структуры породообразующих минералов производится в несколько этапов [2]. Из-за интегральной природы формирования дифракционного пика от поликристаллического образца, разброс значений напряжений вокруг средней величины, связанный с величиной микро деформацией (ε), вызовет его уширение. Кроме того, ширина и форма профиля дифракционной линии рентгенограммы поликристалла зависят от величины рассеивающих областей (D) блоков мозаики. Сначала находят интегральную ширину B_{3xcn} , зависящую от состояния структуры:

$$B = \frac{1}{I_{\max}} \left[h \sum_{k=1}^{n} I_k - \frac{I_{\phi 1} + I_{\phi 2}}{2} nh \right], \tag{2}$$

где I_{\max} – интенсивность в максимуме дифракционного пика; h – шаг перемещения детектора; n – число точекизмерения интенсивности дифракционного пика; $I_{\phi 1}$, $I_{\phi 2}$ – интенсивность фона на краях дифракционного пика.

Плотность дислокаций, находящихся на границе блоков, определяется по формуле:

$$\rho_D = \frac{6nD}{2D^2} = \frac{3n}{D^2},\tag{3}$$

где ρ – длиналиний дислокаций в единице объема (плотность дислокаций); D – размер блока; n – число дислокаций на грани блока.

При n = 1 (хаотическое распределение дислокаций) 2

$$\rho_D = \frac{3}{D^2} \tag{4}$$

можно вычислить плотность дислокаций внутри блока (ρ_{ϵ}) и истинную плотность дислокаций ($\rho_{\text{ист}}$).

Также определяется концентрация деформационных и двойниковых дефектов упаковки.

Рентгеновская дифрактометрия используется для исследования процессов, протекающих в горных породах, подвергающихся внешнему тепловому воздействию [3]. Этим методом исследуются как фазовые превращения, нарушения структуры, тепловое расширение породообразующих минералов, так и явления, присущие горной породе в целом – появление микроструктурных напряжений, протекание пластических микродеформаций и т. д.

Для оценки изменения параметров структуры и остаточных напряжений от воздействия теплового поля, исследовали несколько разновидностей горных пород. В таблице 1 представлены деформационные характеристики горных пород до и после их термической обработки.

Для изучения изменений параметров структурного состояния исследовали образцы, представляющие исходные (генетические) состояния и образцы после термической обработки. Исследования проводили на рентгеновском дифрактометре типа ДРОН-2, с использованием специальных гониометрических приставок. Гониометры могут быть снабжены приставками для вращения или колебания крупнозернистых образцов и исследования горных пород в особых условиях.

Вестник КРСУ. 2017. Том 17. № 8

	$\sigma_{_{I^{st 3}}} \cdot 10^3 M \widehat{o} a p$	1,64 0,61	0,80 0,26	6,46 1,95	5,5 1,9			
	$\sigma_{_{B^{*}3}} \cdot 10^3 M \delta a p$	40 10,3	11 4,8	$\begin{array}{c}1,4\\8,6\end{array}$	0,61 2,2			
don vi	$\gamma \cdot 10^3$	51 7,4	3000 3000	3000 2900	3,3 9,4			
midat	$\alpha \cdot 10$	27 16	2000 2000	2000 2000	2,8 8,3			
aormdorrine -	$ ho_{cp} \cdot 10^- \mathrm{cm}^2$	7,6 1,8	1,3 2,2	0,855,0	$0,20 \\ 0,45$			
	$ ho_s \cdot 10^{-12} \mathrm{cm}^2$	123 18	17,5 17,1	15 47	0,57 2,35			
	$\epsilon \cdot 10^{3}$	-8,8 -3,6	9,2 -8,2	8,9 -1,3	-0,68 -1,4	-3.97 -3.42 4.11	-2,93 -1,48	-1,99 -3,02
210120	r_{s} Å					78 76 73	150 320	171 116
J Put	r_{D} , Å					223 217 309	264 295	320 397
	$ ho_D \cdot 10^- \mathrm{cm}^2$	47 19	9,4 29	5,0 52,0	7,1 8,5	20,2 21,2 10,5	14,3 11,5	9,8 6,3
amada	$D, m \AA$	254 398	566 324	784 239	651 594	385 376 535	458 511	554 688
	Состояние и номер образца	Исходн., 10 после тер- мич. обработки, обр.7	Исходн., 12 после т.о., 7	Исходн.,2 после т.о.,4	исходн.,2 после т.о.,4	Исходн., 2 ¹ после т.о., 1 пос, т.о., 4 ¹	Исходн.,2 исходн.,2	Исходн.,2 исходн.,2
	Название минерала	Кварц	Кальцит	Кальцит	Кварц	Кварц	Кварц	Кварц
	Название и место от- бора породы	Гранит, Кырта- былгы	Мрамор, Новорос- сийск	Песчаник Рогун			Кварц, Вост. Коунрад	Гранит, Вост. Коунрад

Таблица 2 – Параметры структуры и остаточных напряжений минералов горных пород

Вестник КРСУ. 2017. Том 17. № 8

199

Науки о земле

На основе анализа положения и формы профилей рентгеновских линий с использованием методов Фурье и гармонического анализа по интенсивностям получены данные о среднем размере блока мозаики D, величине остаточной деформации кристаллической решетки е, плотности дислокации на границе блока мозаики r_e , средней плотности дислокации r_{cp} , напряжения внутри зерна $s_{e.s.}$, и на границе зерна $s_{e.s.}$ вероятности дефектов упаковки a и двойниковых дефектов g, расстояния между дислокациями на границе блока r_p , расстояния между дислокациями внутри блока r_e . Результаты измерения этих параметров приведены в таблице 2.

Результаты исследований структуры и остаточных напряжений показали, что термическая обработка в режиме закалки приводит к существенным изменениям напряжений на всех структурных уровнях.

В кварцсодержащих горных породах сжимающие остаточные напряжения на уровне кристаллической решетки в основном снижаются и при дальнейшем увеличении температуры преобразуются в растягивающие напряжения.

В мономинеральных породах, содержащих кальциты, преобладающие растягивающие напряжения преобразуются в сжимающие остаточные напряжения. При преобладании сжимающих остаточных напряжений прочность горных пород увеличивается, а при увеличении растягивающих остаточных напряжений, наоборот происходит разупрочнение.

Плотность дислокации на границе блока изменяется неоднозначно, термообработка горных пород приводит к структурным изменениям в зависимости от минералов. В кальцитах плотность дислокаций от термообработки увеличивается в 2–5 раз, в кварцах, наоборот уменьшается от 1,5 до 2,5 раз.

В кальцитах растягивающие остаточные напряжения 3-го рода преобразуются в значительные сжимающие напряжения, напряжения растяжения внутри и на границе зерен уменьшаются в 2–3 раза.

Термическая обработка также влияет на деформационные характеристики горных пород. У гранита (Кыртабылга), песчаника (Рогун) и мрамора происходит значительное уменьшение модуля упругости.

Литература

- Зильбершмидт М.Т. Механизм изменения структурного состояния горных пород при внешнем воздействии / М.Т. Зильбершмидт // Физические процессы в горных породах: матер. всес. конф. М., 1984.
- Зильбершмидт М.Г. Методы анализа структурного состояния горных пород. Ч. 1 / М.Г. Зильбершмидт, Т.К. Заворыкина. М.: МГИ, 1980. С. 88.
- Зильбершмидт М.Г. Рентгеновские методы исследования горных пород / М.Г. Зильбершмидт, С.В. Ржевская. М., 1981.