ИССЛЕДОВАНИЕ ПРОЦЕССА ПОЛУЧЕНИЯ АМОРФНОГО КРЕМНИЯ

В.П. Макаров, А.Ж. Календеров

Определены параметры получения пленок аморфного кремния на различные материалы, исследованы их структурные параметры.

Ключевые слова: аморфный кремний; напыление; подслой.

Аморфный кремний в последнее время широко используется в оптике, в солнечных элементах, где поверхность должна отвечать определенным требованиям качества и чистоты. Для осаждения кремния используют поверхности различных материалов, но большинство из них сильно влияет на процесс осаждения. Стекло и керамика являются простыми материалами и не вносят существенных изменений в структуру осаждаемой пленки [1].

Цель данного исследования – определить характер влияния типа подложки на осаждение кремния и процесс формирования структуры получаемой пленки аморфного кремния. Информацию об элементном составе материала пленок получали с помощью рентгеноструктурного анализа.

Для формирования солнечного элемента необходимы слои алюминия меди и других элементов в качестве подслоя.

Все работы по напылению проводились в вакуумном универсальном посту ВУП-4. В качестве основных подложек были использованы пластинки стекла и керамики. В качестве дополнительных пленок подслоя – алюминий (*Al*) и медь (*Cu*). На подложку стекла и керамики в вакууме осаждались слои алюминия и меди. Напыление производилось однослойное (Al, Cu) и на эти слои напылялся кремний. В результате получались двухслойные материалы (Cu-Al, Al-Cu, Cu-Si, Al-Si). Толщина пленок измерялась на растровом электронном микроскопе, и составляла ~ 2 - 2,5 мкм.

В таблице 1 приведены условия осаждения слоев алюминия, меди и кремния.

Результаты рентгеноструктурного анализа полученных материалов представлены на рисунках 1–4.

По оси x отложены углы 2θ , а по оси y – значения интенсивности отражения. По наиболее выраженным пикам углов, используя формулу Вульфа–Брегга, находим межплоскостные расстояния [2]:

 $d = n\lambda /2sin\theta$,

где d – межплоскостное расстояние, \dot{A} ; λ – излучение трубки (использовался медный анод: $\lambda_{Cu} = 1,54178 \ \dot{A}$); θ – угол падения-отражения луча; n = 1, 2, 3 ... – порядок отражения.

Результаты приведены в таблице 2. Полученные по формуле экспериментальные результаты $d_{_9}$ совпадают с данными из справочника d_c . По справочнику также находим направление плоскости *hkl* и интенсивность *I* [2, 3].

Таблица 1 –	Условия	напыления	Al,	Сии	Si
-------------	---------	-----------	-----	-----	----

Материал	Ср. время напыления, мин	Ток, А	Расстояние подложка- испаритель, см	Толщина слоя, мкм	
Al	0,5–1,5	60–90	10		
Cu	0,5-1,5	60-80	10	~2-2,5	
Si	2-3	100-200	10		

Вестник КРСУ. 2012. Том 12. № 10

Материал	θ	d ₃	d _c	hkl	Ι	
	38,62	2,33123	2,33	111	1	Al
A1 Cu (amazuna)	43,38	2,08583	2,08	111	1	Cu
AI-CU (CTEKJIO)	44,66	2,02898	2,02	200	0,4	Al
	51,12	1,78672	1,798	200	0,86	Cu
	38,44	2,34174	2,33	111	1	Al
Cu-Al	43,1	2,09873	2,08	111	1	Cu
(стекло)	44,46	2,03764	2,02	200	0,4	Al
	50,8	1,79722	1,798	200	0,86	Cu
	38,5	2,33823	2,33	111	1	Al
	43,48	2,08127	2,08	111	1	Cu
Al-Cu	65,5	1,425	1,43	220	0,3	Al
(керамика)	78,88	1,21349	1,219	311	0,3	Al
	83,24	1,16065	1,168	222	0,07	Al
	91,28	1,07823	1,083	311	0,86	Cu
	39,1	2,30372	2,33	111	1	Al
Cu-Al	43,46	2,08218	2,08	111	1	Cu
(керамика)	74,34	1,27593	1,271	220	0,71	Cu
	90,72	1,08342	1,083	311	0,86	Cu

Таблица 2 – Расчетные данные для двухслойных поверхностей Al-Cu и Cu-Al

Рентгенограмма показала, что нижний слой материала (особенно алюминий) определяется хорошо. Медь и алюминий хорошо проявляются как на верхнем слое, так и на нижнем, в сочетании друг с другом.

Рисунок 1 – Рентгенограмма слоя *Си*, напыленной на слой *Al* (основа стекло)

На рисунках 5–8 показаны рентгенограммы образцов *Al-Si* и *Cu-Si*, также напыленных на стекло и керамику. Расчеты приведены в таблице 3.

В ходе проведенных исследований были установлены оптимальные параметры получения пле-

Рисунок 3 – Рентгенограмма слоя *Си*, напыленной на слой *Al* (основа керамика)

Вестник КРСУ. 2012. Том 12. № 10

Материал	θ	d _.	d _c	hkl	Ι	
Al-Si (стекло)	38,62	2,33123	2,33	111	1	Al
	42,92	2,10712	2,02	200	0,4	Al
	57,54	1,6017	1,63	311	0,63	Si
	70,68	1,33274	1,354	400	0,18	Si
	77,6	1,23027	1,242	331	0,25	Si
Си-Si (стекло)	43,68	2,0695	2,08	111	1	Cu
	51,64	1,76994	1,793	200	0,86	Cu
	56,46	1,62975	1,63	311	0,63	Si
	70,12	1,342	1,354	400	0,18	Si
	74,56	1,27271	1,271	220	0,71	Cu
	39,1	2,30372	2,33	111	1	Al
Al-Si	45,08	2,01105	2,02	200	0,4	Al
(керамика)	68,5	1,36973	1,354	400	0,18	Si
	76,84	1,24053	1,242	331	0,25	Si
Cu-Si (керамика)	43,7	2,0713	2,08	111	1	Cu
	51,84	1,76359	1,798	200	0,86	Cu
	68,54	1,36903	1,354	400	0,18	Si
	74,92	1,26748	1,271	220	0,71	Cu
	76,96	1,23889	1,242	331	0,25	Si
	90,88	1,08193	1,083	311	0,86	Cu
	95 34	1 04276	1.038	222	0.56	Cu

Таблица 3 – Расчетные данные для двухслойной поверхности Al-Si, Cu-Si

Рисунок 5 – Рентгенограмма слоя *Si*, напыленного на слой *Al* (основа стекло)

нок аморфного кремния при термическом напылении на слои *Al* и *Cu*. Расчет рентгенограммы показал, что стекло и керамика не вносят изменений на получаемый аморфный кремний.

Рисунок 7 – Рентгенограмма слоя Si, напыленного на слой *Al* (основа керамика)

напыленного на слой Си (основа керамика)

Литература

 Технология тонких пленок: справочник. Том 1 / под ред. Л. Майссел, Р. Глэнг. М.: Советское радио, 1977. 645 с.

К.А. Ласанху, Н.К. Касмамытов

 Горелик С.С., Расторгуев Л.Н., Скаков Ю.А. Рентгенографический и электронно-оптический анализ. М.: Металлургия, 1970, С.4–18. Миркин Л.И. Справочник по рентгеноструктурному анализу поликристаллов. М.: Физматиздат, 1960. 864 с.