УДК 539.3 (575.2) (04)

МЕХАНИЗМЫ ОЧАГОВ ЗЕМЛЕТРЯСЕНИЙ СРЕДНЕЙ СИЛЫ НА СЕВЕРНОМ ТЯНЬ-ШАНЕ

А.Д. Костюк – мл. науч. сотр. Научная станция РАН Бишкек

Faulting geometry, seismic moment and depth of 70 moderate-sized earthquakes in the Northen Tien Shan were estimated by matching observed and synthetic seismogram records. The distribution and mechanism of earthquakes suggests that there is a significant shortening in north-north-west directions, what consistent with the orientation of India-Eurasia convergence.

Ввеление. Тянь-Шань является олним из ярких примеров континентального горообразования, появившегося в результате сжатия [1]. Он включает в себя ряд горных хребтов широтного простирания и окружен Памиром и Таримским плато с юга, Казахской платформой на севере. Тянь-Шань был сформирован в позднепалеозойское время и испытал активизацию в олигоценовую эпоху [2]. Основные тектонические силы в данном регионе обусловлены коллизией между Индийской и Евразийской плитами, которые определяют сейсмическую активность региона. Несмотря на высокий уровень сейсмичности, крупные землетрясения в данном регионе довольно редки [3]. Вместе с тем в настоящее время происходит интенсивное меридиональное укорочение Тянь-Шаня [4], которое в целом согласуется с неотектонической структурой, субширотным простиранием хребтов и впадин, взбросонадвиговым характером разрывных нарушений и другими особенностями структуры [5]. Величина сокращения земной коры в направлении с севера на юг оценивается в 11 мм/год [6] и по данным GPS – 12 мм/год [4]. Тем не менее, значимые землетрясения концентрируются преимущественно в областях северной и южной границ этой горной системы [7]. Таким образом, анализ сейсмотектоники Тянь-Шаня является актуальной задачей, и детальное изучение региона поможет в оценке природных опасностей, связанных с геодинамическими процессами. Новые данные о механизмах землетрясений позволят оценить сейсмотектонический процесс в регионе более детально.

В данной статье рассмотрены параметры очагов землетрясений методом волновой инверсии (moment tensor inversion) на территории Северного Тянь-Шаня. Использование данных по очагам землетрясений средней силы позволит оценить тектонику региона при отсутствии крупных событий в настоящее время. Как известно, Северный Тянь-Шань представляет собой зону активных разломов, непрерывно простирающуюся свыше 600 км вдоль окраины орогена, и в которой частично реализовалось сокращение верхней части земной коры Тянь-Шаня. В ее пределах отмечается высокая современная сейсмическая активность и ожидается возникновение разрушительных землетрясений, которые уже в XIX, XX вв. произошли здесь [3].

Исходные данные и метод обработки. Фокальные механизмы очагов землетрясений определяли по программе, разработанной Ю. Яги (Y. Yagi) [8], которая использует метод инверсии волновой формы. Принцип, лежащий в основе волнового моделирования, заключен в разделении свойств источника и эффектов, накладываемых распространением колебаний. В сейсмическом волновом моделировании имеется три базовых фильтра [9].

$$u(t) = s(t) * g(t) * i(t),$$
 (1)

где u(t) – сейсмограмма, s(t) – сигнал из сейсмического источника, g(t) – фильтр распространения колебаний и i(t) – эффект, на-кладываемый сейсмографом.

В действительности s(t) и g(t) могут быть разделены на несколько фильтров для описания отдельных эффектов. Выражение (1) можно представить через тензор момента:

$$u_n(x,t) = s(t) * i(t) * \sum_{i=1}^{5} (m_i \cdot Green_{ni}(t)),$$

 $m_1 = M_{11}, m_2 = M_{22}, m_3 = M_{12}, m_4 = M_{13}, m_5 = M_{23},$ (2) где u_n – трехкомпонентное смещение.

Сумма (2) представляет собой произведение тензора сейсмического момента (здесь записанного как m_i), остается пять элементов, так как полагаем $m_{33} = -(m_{11} + m_{22})$) и *Green_{ni}(t)*, соответствующих функциям Грина. Компоненты тензора момента в данном случае могут быть легко определены. Функции Грина – это отклики на единичный импульс смещения сейсмического источника по соответствующим компонентам для каждого элемента тензора момента.

Таким образом, создание синтетической сейсмограммы осуществляется путем суммирования пяти базовых решений с различными весами. При этом мы пренебрегаем особенностями источника s(t), используя только волны с большим периодом, и проводим предварительную корректировку сейсмограмм согласно эффектам, которые накладываются самим сейсмографом i(i). Тогда выражение (2) принимает вид:

$$o_n(x,t) = \sum_{i=1}^{5} m_i \cdot Green_{ni}(t), \qquad (3)$$

где $o_n(x,t)$ — реальная сейсмограмма, которая прошла через фильтр, убирающий эффект, накладываемый характеристиками сейсмографа.

Выражение (3) можно записать в простой матричной форме: **O** = **Gm**, (4)

$$\mathbf{O} = \begin{bmatrix} o_{ud1} \\ o_{ud2} \\ \vdots \\ o_{ns1} \\ \vdots \end{bmatrix}, \quad \mathbf{G} = \begin{bmatrix} Green_{ud1}^{m_1} & Green_{ud1}^{m_2} & \cdots & Green_{ud1}^{m_5} \\ Green_{ud2}^{m_1} & Green_{ud2}^{m_2} & \cdots & Green_{ud2}^{m_5} \\ \vdots & \vdots & \ddots & \vdots \\ Green_{ns1}^{m_1} & \vdots & \cdots & Green_{ns1}^{m_5} \\ \vdots & \vdots & \cdots & \vdots \end{bmatrix},$$
$$\mathbf{m} = \begin{bmatrix} m_1 \\ m_2 \\ m_3 \\ m_4 \\ m_5 \end{bmatrix}.$$

Причем O_{ud1} – сейсмограмма для вертикальной компоненты (up-down) первого измерения; *Green*^{m1}_{ud1} – функция Грина вертикальной компоненты первого измерения для компоненты тензора сейсмического момента m_1 .

Будем подбирать такое решение, при котором разница между наблюдаемой сейсмограммой и синтетической минимальна. В используемом программном обеспечении используются только отраженные фазы pP и sP. Для расчета функции Грина применяли скоростную модель ИГД РАН [10], плотности пород указывали согласно [11], затухание Qопределяли на основе геологической карты [12] и таблицам по свойствам пород [9]. Итоговая модель структуры земной коры Северного Тянь-Шаня приведена в табл. 1.

Таблица 1

		15 51	1 1		
Глубина, км	V _p , км/с	V _s , км/с	Плотность, г/см ³	Qp	Qs
5,0	5,45	3,15	2,77	250	150
10,0	6,04	3,48	2,78	250	150
20,0	6,25	3,62	2,84	400	200
35,0	6,37	3,69	2,85	400	200
50,0	7,19	4,07	2,85	400	200
75,0	8,08	4,49	3,25	600	280

Модель структуры земной коры Северного Тянь-Шаня

Вестник КРСУ. 2008. Том 8. № 1

Рис. 1. Решения фокальных механизмов, полученные нами (серый цвет); решения CMT Harvard за 1994-2006 гг. (черный цвет); расположение станций сейсмологической цифровой сети КNET (белые треугольники); положение землетрясений по каталогу ЛКИ НС РАН за 1994-2006 гг. (черные точки); разрушительные землетрясения (серые звезды);

активные разломы по Томпсону и др. [16] (черные линии).

Рис. 2. Распределение параметров главных осей напряжения.

Технология волновой инверсии применялась для оценки параметров очагов землетрясений, таких, как strike, dip, slip, магнитуда $\boldsymbol{M}_{\boldsymbol{W}}$ и глубина для событий, находящихся на расстоянии 1°-2° от сейсмологической сети.

Полученные результаты расширяют существующий набор данных по фокальным механизмам для исследуемого региона, дополняя его событиями слишком слабыми для телесейсмического и регионального моделирования. Используемый метод инверсии тензора момента позволяет точнее определить глубину землетрясений, чем СМТ и другие процедуры телесейсмической локации очагов [7]. Исходные данные представляли собой волновые цифровой широкополосной формы сети КNЕТ, загруженные с сайта Объединенного исследовательского института сейсмологии (IRIS - www.iris.edu). Данная сейсмологическая сеть функционирует на территории Северного Тянь-Шаня (рис. 1) с 1991 г. [13]. События, участвовавшие в обработке, были выбраны по каталогу ЛКИ НС РАН за период 1994-2006 гг. Отбирали землетрясения, лежащие в пределах исследуемого региона и имеющие энергетический класс К не ниже 9,75. Общее число событий составляло 100, но в результате удалось получить решение только для 70 землетрясений.

Результаты. Преобладание взбросовых механизмов землетрясений ярко выражено (рис. 1, табл. 2), вместе с тем некоторые события имеют большие сдвиговые компоненты. Анализ диаграмм распределения направлений главных осей напряжения (рис. 2) позволяет выявить тенденцию в направлениях осей сжатия и растяжения. Основное направление осей сжатия – север-юг, с небольшим преобладанием северо-северо-западной ориентации. Растяжению соответствует северо-восточное направление.

Максимальное число событий приходится на 5° для оси сжатия. Это свидетельствует о преимущественно близгоризонтальном сжатии. Для угла погружения оси растяжения отмечается максимум на 65°. Можно отметить, что в целом, если для оси сжатия с увеличением угла погружения число событий уменьшается, то для оси растяжения наблюдается противоположенная картина. Вместе с тем, угол погружения оси растяжения имеет два всплеска-максимума на 25° и 65°.

Таким образом, для всего региона Северного Тянь-Шаня характерно преобладание механизма, при котором ось сжатия горизонтальна, а ось растяжения субвертикальна, и этот тип очагов характеризуется взбросовыми движениями. Полученные решения фокальных механизмов позволили построить карты проекций осей сжатия (рис. 3) и растяжения (рис. 4) на горизонтальную плоскость. В результате, можно оценить направления осей сжатия и растяжения на отдельных локальных участках. Направление осей сжатия указывает, что сжатие происходит в субмеридиональном направлении и это подтверждается GPS измерениями.

Рис. 4. Проекция осей растяжения фокальных решений на горизонтальную поверхность.

Направление сжатия по данным поля GPS скоростей северо-северо западное [5, 14, 15]. Геологические данные по активным разломам совпадают с характером деформирования земной коры по полученным решениям механизмов очагов [16]. Известны результаты расчета сейсмотектонических деформаций по решениям фокальных механизмов, определенных по полярности прихода волн. Они показывают, что Северный Тянь-Шань в основном характеризуется деформацией простого сжатия, за исключением Суусамырской впадины, где земная кора находится в условиях простого сдвига. При этом породы земной коры испытывают сжатие в меридиональном направлении [17],

Вестник КРСУ. 2008. Том 8. № 1

Таблица 2

Год	Месяц	День	Час	Мин.	Сек.	Долг.	Шир.	Глуб.	Mw	Mrr	Mtt	Mff	Mrt	Mrf	Mtf	Exp
1996	1	14	18	16	26,66	74,86	42,7	5	4,29	2,56	-2,36	-0,19	-2,34	-0,32	0,25	15
1996	5	14	12	45	27,44	74,97	41,54	8,6	4,43	5,1	-4,01	-1,09	0,94	-0,47	-2,85	15
1996	6	12	3	39	58,59	73,37	42,15	7,9	3,78	0,81	3,06	-3,88	0,43	-4,52	-2,04	14
1998	5	16	22	36	6,41	73,96	42,56	7,9	3,54	2,09	-1,2	-0,89	0,07	-0,87	-1,49	14
1998	8	26	22	50	27,42	75,01	42,24	37,8	3,29	0,42	-9,57	9,15	5,95	0,41	0,49	13
1998	11	2	0	57	37,1	75,08	42,1	13,6	3,76	4,66	-4,25	-0,42	-0,97	1,23	-2,52	14
1998	11	5	4	17	41,05	76,25	43,38	20,6	3,58	1,13	-1,71	0,58	-0,39	1,35	-2,02	14
1999	12	6	7	33	11,59	76,27	42,69	16,7	4,96	3,53	-2,32	-1,21	0,46	-0,08	-1,47	16
1999	12	6	8	17	28,47	76,33	42,72	19,8	3,83	6,35	-6,2	-0,16	1,59	2,48	-0,76	14
2000	1	14	13	27	43,37	75,74	42,07	15,1	3,25	6,06	-9,43	3,37	-2,7	-2,42	2,47	13
2000	2	6	21	46	27,55	73,19	41,62	19,7	3,53	1,83	-1,35	-0,49	1,51	0,81	-0,73	14
2000	2	13	9	46	7,6	73	41,71	18,4	4,1	0,11	-1,52	1,41	0,23	-0,44	-0,8	15
2000	3	9	16	29	37,41	74,87	41,61	24,2	3,52	1,37	-1,66	0,29	1,59	0,71	0,46	14
2000	9	7	22	50	14,7	76,5	42,77	20,9	3,61	3,24	-2,37	-0,87	-1,15	0,93	-0,85	14
2001	2	21	12	15	16,4	75	42,74	0,2	3,62	2,97	-3,3	0,33	0,38	0,09	1,26	14
2001	4	10	0	13	24,43	73,19	41,77	3,8	3,78	1,07	-1,32	0,25	-3,9	-4,04	-0,49	14
2001	5	9	11	14	16,23	73,08	41,74	3,5	3,51	1,75	0,27	-2,02	-0,85	-0,82	-0,68	14
2001	5	22	15	2	33,55	76,18	42,15	14,6	4,11	0,35	-1,49	1,14	-0,07	-0,88	-0,88	15
2001	7	8	11	51	52,68	74,98	42,14	7,3	3,48	1,91	-1,74	-0,16	0,91	-0,12	0,29	14
2001	8	18	1	12	4,2	73,25	42,17	21,6	3,33	1,05	-0,07	-0,98	0,1	-0,24	-0,68	14
2001	11	18	1	28	55,44	74,14	42,59	7,3	4,16	1,47	-1,23	-0,24	1,5	-0,33	-0,8	15
2002	2	26	1	37	22,48	73,09	42,74	8,9	3,71	3	-3,79	0,79	-0,82	-2,15	1,82	14
2002	6	17	21	3	47,98	73,75	42,14	12,3	3,63	2,28	-3,79	1,51	-0,4	1,15	-0,31	14
2002	7	11	21	2	44,8	75,54	41,63	11,7	3,46	0,83	-0,02	-0,81	-0,49	0,82	-1,43	14
2002	8	31	17	46	38,13	73,27	41,59	12,8	3,21	1,86	-6,72	4,85	4,38	-0,87	-3,82	13
2002	11	12	23	6	11,17	74,6	43,2	1,5	2,98	2,25	-0,57	-1,68	-0,77	-2,38	-1,//	13
2003	2	21	10	35	22,15	/4,4/	42,53	6,2	3,49	0,8	-0,/2	-0,08	-1,/2	0,45	-0,95	14
2003	5	/	16	11	15,88	/3,4	42,15	15	3,23	-0,4/	4,64	-4,1/	4,94	-0,43	-5,8	13
2003	/	28	4	57	29,84	74,67	41,64	0,1	3,89	3,89	-1,/9	-2,1	5,89	0,84	-5,04	14
2003	10	0	10	42	15,95	75.2	42,5	10,1	3,34	-0,01	-1,79	1,8	-0,15	-1,2	-1,55	14
2004	1	10	9	0	24.09	75.09	42,33	15,5	4,01	1,03	-0,87	-0,19	0,00	-0,15	-0,51	10
2004	1	18	15	20	34,98	73,28	42,33	24.0	3,40	1,1	-1,9	0.28	-0,94	0,25	-0,04	14
2004	2	13	2	40	83	74,20	42,83	24,9 40	3,52	2,21	-2,49	0,28	-0,17	-0,33	-0,17	14
2004	6	2	17	15	0,5	74,9	42,74	15.7	1 38	0,03	-4.16	-1,34	-0,89	-1,01	-1,01	14
2004	11	27	17	13	54.3	74,91	42,20	01	3 31	1 16	-4,10	-0,01	-1,0	0,03	-0,74	13
2004	11	29	0	44	54 94	75 31	41.62	18.3	4 08	1,10	-0,00	0.02	0.26	0,04	-0.22	15
2001	4	20	17	48	53.1	76.49	42.41	19.9	3.7	3 74	_3 33	-0.41	1.97	-1.1	-1.43	14
2005	6	8	21	5	21 44	75.09	42.16	18,1	3 26	936	-9,55	-0,41	-1.07	-2.53	-2.14	13
2005	6	20	14	25	15	74 38	42.77	19.8	3 51	-0.2	-2.21	2.41	-0.16	0.07	0.16	14
2005	12	28	1	52	48.29	75 41	42.69	31	4 12	1.27	-1.26	-0.01	-1 43	0.06	-0.05	15
2005	12	29	8	50	32,76	75.4	42.69	3.9	3.39	1.44	-0.57	-0.88	-0.9	-0.16	-0.34	14
2006	1	1	8	56	53.85	75.25	42.6	37.7	3.62	2.4	-0.72	-1.69	-2.62	0.05	0.88	14
2006	2	5	10	28	12,21	76.92	41.94	8.7	4,11	1,43	-1.56	0,14	0	1,05	-0.07	15
2006	8	15	18	58	22,87	75,11	42,6	5,8	3,31	8,26	-6,45	-1,8	-8,25	-4,01	0,61	13
2006	10	22	11	1	32,21	73,36	42,16	17,7	3,64	2,4	-2,16	-0,23	2,65	-0,14	-0,96	14
2006	11	8	2	21	26,94	75,36	42,57	13,5	4,59	7,6	-8,91	1,32	-0,61	-3,59	-2,46	15
2006	12	25	20	0	58,32	76,03	42,11	12,7	5,7	2,87	-2,9	0,02	-2,58	0,54	-1,96	17

Параметры очагов землетрясений Северного Тянь-Шаня

104

Вестник КРСУ. 2008. Том 8. № 1

что в целом хорошо согласуется с полученными результатами. Они могут быть применены не только для уточнения общей картины деформирования Северного Тянь-Шаня, но и для оценки типов разломных зон. Механизмы землетрясений помогают выяснить характер современных подвижек сейсмически активных сегментов разломных зон, что особенно важно, когда исходя из геологических данных, сделать оценку в ряде случаев затруднительно.

Работа выполнена при финансовой поддержке РФФИ по проекту №07-05-004336.

Литература

- Абдрахматов К.Е., Уэлдон Р., Томпсон С., Бурбанк Д., Рубин Ч., Милер М., Молнар П. Происхождение, направление и скорость современного сжатия Центрального Тянь-Шаня // Геология и геофизика. – 2001. – Т. 42. – №10. – С. 1585–1609.
- Molnar P. and Tapponier P. Cenozoic tectonic of Asia: Effect of a collision // Science. – 1975. – V. 89. – P. 419–426.
- Абдрахматов К.Е. Современная блоковая структура Северного Тянь-Шаня // Геодинамика и геоэкологические проблемы высокогорных регионов: Сб. матер. Второго междунар. симпоз., 29 октября – 3 ноября 2002 г. – Москва-Бишкек: НС ИОВТ РАН, 2003. – С. 19–33.
- Abdrakhmatov K.Ye. et al. Relatively recent construction of the Tien Shan inferred from GPS measurements of present day crustal deformation rates // Letters to Nature. – 1996. – V. 384. – P. 450–453.
- Зубович А.В., Макаров В.И., Кузиков С.И., Мосиенко И.О., Щелочков Г.Г. Внутриконтинентальное горообразование в Центральной Азии по данным спутниковой геодезии // Геотектоника. – 2007. – №1. – С. 16–29.
- Molnar P. and Qidong. Faulting associated with large earthquakes and the average rate of deformation in Central and Eastern Asia // Journal of Geophysical Research. – 1984. – V. 89. – P. 6203–6227.
- 7. Sujoy Ghose, Michael W. Hamburger, Charles J. Ammon. Source parameters of moderate-sized

earthquakes in Tien Shan, central Asia from regional moment tensor inversion // Geophysical Research Letters. – 1998. – V. 25. – №16. – P. 3181–3184.

- Yagi Y. Determination of focal mechanism by moment tensor inversion. – Tsukuba: IISEE Lecture Note, 2004. – 51 p.
- Thorne Lay, Terry C. Wallace Modern Global Seismology. – San Diego: Academic Press, 1995. – 521 p.
- 10. Земная кора и верхняя мантия Тань-Шаня в связи с геодинамикой и сейсмичностью / Отв. ред. А.Б. Бакиров. – Бишкек: Илим, 2006. – 116 с.
- Курскеев А.К., Белослюдцев О.М., Жданович А.Р., Серазетдинова Б.З., Степанов Б.С., Узбеков Н.Б. Сейсмологическая опасность орогенов Казахстана. – Алматы: Эверо. – 294 с.
- Геологическая карта Киргизской СССР. Масштаб 1:500 000 / Гл. ред. С.А. Игембердиев. – Л.: Мингео СССР, 1980. – 6 листов.
- Vernon F. The Kyrgyz Seismic Network // IRIS Newsletter. XIII. – 1994. – №2. – P. 7–8.
- Kostuk A. Seismicity and crustal deformation in Kyrgyzstan // Individual studies by participant at the international institute of seismology and earthquake engineering. – 2005. – V. 41. – P. 45–57.
- 15. Костюк А.Д., Sagia Т., Зубович А.В. Сравнение распределения сейсмичности и поля деформаций // Вестн. КРСУ. – 2006. – Т. 6. – №3. – С. 64–70.
- Stephen C. Thompson, Ray J. Weldon, Charles M. Rubin, Abdrakhmatov K., Peter Molnar, and Glenn W. Berger Late Quaternary slip rates across the central Tien Shan, Kyrgyzstan, Central Asia // Journal of Geophysical Research. – 2002. – V. 107. – P. 17–32.
- 17. Сычева Н.А., Аладьев А.В., Мухамадеева В.А., Юнга С.Л., Богомолов Л.М. Очаговые механизмы и сейсмотектонические деформации как проявления напряженного состояния коры Северного Тянь-Шаня // Геодинамические, сейсмологические и геофизические основы прогноза землетрясений и оценки сейсмического риска: Докл. – Алматы, 2005. – С. 41–48.