УДК 519.718.2

ОЦЕНКА НАДЕЖНОСТИ ТЕХНИЧЕСКИХ СРЕДСТВ РЕЛЕЙНОЙ ЗАЩИТЫ АТОМНОЙ ЭЛЕКТРОСТАНЦИИ

С.Н. Грицюк, М.А. Фролова

Приведена оценка надежности технических средств релейной защиты атомной электростанции. Расчет показателей надежности приборов релейной защиты, обеспечивающих функции управления, автоматики и сигнализации, позволил сделать вывод о соответствии устройств установленным требованиям эксплуатации.

Ключевые слова: надежность; релейная защита; технические средства; вероятность безотказной работы.

ESTIMATION OF RELIABILITY OF RELAY PROTECTION ON NUCLEAR POWER PLANT

S.N. Gritsyuk, M.A. Frolova

The paper provides an estimation of the reliability of relay protection equipment at a nuclear power plant. Calculation of reliability indicators of relay protection devices that provide control, automation and signaling functions, allow concluding that the devices comply with the established operational requirements.

Keywords: reliability; relay protection; technical means; probability of survival.

Особенностью функционирования атомных электростанций, оказывающей значительное влияние на принципы построения схем электроснабжения потребителей собственных нужд, является наличие остаточных тепловыделений в активной зоне после плановой или внеплановой (аварийной) остановки блока. Существует необходимость обеспечения непрерывной циркуляции теплоносителя через активную зону для отвода остаточных тепловыделений, а также работы теплообменных устройств.

Независимо от причины остановки реактора атомной станции его расхолаживание должно осуществляться безотказно, включая случаи исчезновения напряжения в сети собственных нужд от основных и резервных источников электроснабжения, связанных с сетью энергосистемы. К системам такого рода предъявляются высокие требования в отношении надежности и эффективности срабатывания, что реализуется посредством автономных источников питания нагрузок, обеспечивающих высокое качество электроэнергии всех потребителей, как в пусковых, так и в установившихся режимах. Электрическая часть таких систем представляет собой сложный комплекс с автоматическим пуском аварийных источников и включением нагрузки ступенями.

Релейная защита элементов распределительных сетей атомных электростанций должна соответствовать требованиям быстродействия, надежности и чувствительности.

Быстродействие релейной защиты должно обеспечивать минимальное время отключения коротких замыканий, что способствует бесперебойной работе неповрежденной части энергосистемы, предотвращает нарушение устойчивости параллельной работы генераторов и электродвигателей, повышает вероятность успешного функционирования устройств автоматического включения резервного питания.

Надежность релейной защиты должна обеспечиваться устройствами, которые по своим параметрам и исполнению соответствуют назначению и условиям применения. На атомных электростанциях используются блоки релейной защиты SPAC, состоящие из модулей, выполняющих функции защиты, управления, автоматики и сигнализации.

Измерительные модули блока релейной защиты представляют собой самостоятельные устройства на цифровой элементной базе, обеспечивающие преобразование сигналов в последовательность двоичных кодов и сравнение их с уставками. Блок управления производит обработку информации по заданному алгоритму и формирует сигналы

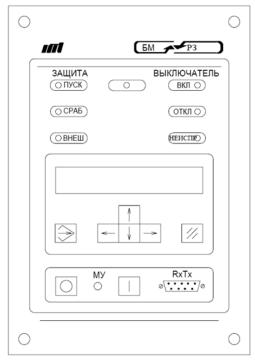


Рисунок 1 – Лицевая панель БМРЗ

срабатывания выходных реле сигнализации и отключения.

Внедрение современных технических средств регистрации, хранения и вывода информации позволяет вести непрерывный мониторинг состояния оборудования атомной электростанции, обработку, хранение и вывод информации в управляющую систему, производить обработку информации по контролируемым параметрам. Применение технических средств, позволяющих контролировать большой объем информации с целью получения статистических данных о возникновении отказов, обеспечивает высокую доверительную вероятность данных по их надежности, что используется при оценке надежности системы в целом.

Для защиты цепей генератора на электростанциях используются микропроцессорные блоки релейной защиты.

Блок предназначен для выполнения функций релейной защиты, автоматики, управления и сигнализации присоединений синхронных двигателей. Устанавливается в релейных отсеках комплектных распределительных устройств, на панелях, в шкафах в релейных залах и пультах управления атомных электростанций.

Выполнение функций защиты, автоматики и управления определяется правилами устройства и технической эксплуатации электроустановок.

Рисунок 2 — Зависимости вероятности безотказной работы блоков от времени эксплуатации

Блок обеспечивает сигнализацию срабатывания защит и автоматики, неисправности блока; отображение текущих параметров объекта; хранение и визуализацию аварийных электрических параметров защищаемого объекта; исправность цепей управления и другие (рисунок 1).

Блок релейной защиты состоит из электрически соединенных функциональных модулей. Существует возможность подключения входных аналоговых сигналов; входных и выходных дискретных сигналов; канала АСУ. В блоке предусмотрена возможность подключения персональной ЭВМ в соответствии со стандартом RS-232, а также включение в систему автоматического управления посредством волоконно-оптической линии связи.

Для расчетов показателей надежности приборов важна взаимосвязь между параметром потока отказов w(t) восстанавливаемого изделия и интенсивностью отказов l(t) этого же изделия, рассматриваемого как невосстанавливаемое [1, 2]. Анализ надежности устройств, функционирующих в различных режимах, проводится с учетом зависимости интенсивности отказов от дестабилизирующих факторов:

$$\lambda_{i} = a_{i} (K_{H}, t) a_{c} \lambda_{oi},$$

где λ_{oi} — интенсивность отказов і-го элемента при нормальных условиях его работы; a_{i} (K_{ii} , t) — поправочный коэффициент, функция коэффициента нагрузки K_{ii} и теплового режима і-го элемента; a_{c} — коэффициент, отражающий влияние окружающей среды и механических воздействий на надежность элементов.

По техническим характеристикам рассматриваемых приборов средняя наработка на отказ (Т) составляет для блока релейной защиты не менее 18 тыс. часов, SPAC – не менее 10 тыс. часов.

Интенсивность отказов для блока релейной защиты $\lambda = 0.0566 \cdot 10^{-3}$.

Интенсивность отказов для SPAC $\lambda = 0.1 \cdot 10^{-3}$.

Вероятность безотказной работы для блока релейной защиты составляет P(t) = 0.58, для SPAC - P(t) = 0.37.

Анализ полученных зависимостей свидетельствует о более высокой вероятности безотказной работы микропроцессорного блока релейной защиты, а, следовательно, более высокой надежности его эксплуатации. Использование в рассматриваемом устройстве аналогово-цифровой и микропроцессорной элементной базы обеспечивает высокую точность измерений и постоянство характеристик, что позволяет существенно повысить чувствительность и быстродействие защит.

Алгоритмы функций защиты и автоматики, а также интерфейсы для внешних соединений

микропроцессорного блока релейной защиты разработаны по техническим требованиям к отечественным системам релейной защиты автоматики, что обеспечивает совместимость с действующими устройствами и облегчает проектировщикам и эксплуатационному персоналу переход на новые технические средства.

Литература

- 1. *Малафеев С.И*. Надежность технических систем. Примеры и задачи / С.И. Малафеев, А.И. Копейкин. М.: Лань, 2012.
- 2. *Аполлонский С.М.* Надежность и эффективность электрических аппаратов / С.М. Аполлонский, Ю.В. Куклев. М.: Лань, 2011.