УДК (616.65-006+621.039.8)

ЛУЧЕВАЯ ТЕРАПИЯ ПРИ РАКЕ ПРЕДСТАТЕЛЬНОЙ ЖЕЛЕЗЫ

С.В. Головачев, Э.К. Макимбетов

Представлены современные литературные данные по лучевой терапии рака предстательной железы. По-казаны основные результаты при проведении дистанционной лучевой терапии и брахитерапии.

Ключевые слова: рак предстательной железы; лучевая терапия; выживаемость.

RADIATION THERAPY IN PROSTATE CANCER

S.V. Golovachev, E.K. Makimbetov

The article considers modern dates from new literature sources regarding radiation therapy in prostate cancer. The main results after distant radiation therapy and brachytherapy are shown.

Keywords: prostate cancer; radiation therapy; survival.

Введение. Рак предстательной железы (РПЖ) является одной из важнейших проблем онкоурологии и в начале XXI века стал самой распространенной болезнью среди мужского населения в большинстве стран мира. В США он является вторым по частоте летальных исходов среди онкологических заболеваний и занимает общее 4-е место среди всех причин смерти мужчин [1]. В структуре онкологической смертности мужского населения России РПЖ находится на 3-м месте после рака легкого и желудка. Смертность от РПЖ составляет 2,9 % в структуре общей смертности от онкологических заболеваний [2]. В течение первого года после установления диагноза умирает около 30 % таких больных. У большинства, 68,5-80 % больных диагностируются местно-распространенные и генерализованные формы опухолевого процесса [3].

Лучевая терапия (ЛТ) является в настоящее время одним из ведущих консервативных специальных методов лечения РПЖ как при локализованном, так и при местно-распространенном процессе [4, 5].

Дистанционное облучение с применением мегавольтных источников излучения (гамма-установка, линейные ускорители и др.) рекомендуется сейчас при всех стадиях РПЖ. Оно является альтернативой радикальной простатэктомии в начальной стадии заболевания в случае невозможности операции в связи с сопутствующими заболеваниями или отказом больного от оперативного лечения [6]. Лучевая терапия с успехом применяется как

в случаях локализованного, так и местно-распространенного РПЖ [7].

При этом в подходах к лучевому лечению у различных авторов имеются существенные различия, касающиеся техники и технологии облучения, объема лучевого воздействия и суммарных очаговых доз [8].

Отсутствие единого подхода в выборе, методах, планировании ЛТ в зависимости от стадии, критериев шкалы Глиссона, уровня инвазии, степени распространенности опухоли и др. побудило провести систематический обзор современных литературных источников.

Целью настоящего исследования явилось проведение систематического обзора и изучение возможностей лучевой терапии при РПЖ по данным литературы.

Материалы и методы исследования. Для достижения цели этого исследования мы провели обзор литературы, обобщение доказательств и роли лучевой терапии в прогнозе и результатах лечения рака предстательной железы. Систематический поиск компьютеризированной базы данных, в базах данных MEDLINE и PUBMED был проведен для разных стран с 2010 г. по декабрь 2016 г. включительно, используя следующие ключевые слова: рак предстательной железы, лучевая терапия, токсичность, осложнения и выживаемость.

Результаты исследования. По мнению Qi R. (2015), до 12 % европейских мужчин в возрасте 55–69 лет с диагнозом рака простаты имеют

заболевание с высокой степенью риска и, следовательно, подвержены повышенному риску смертности. До сих пор отсутствует окончательный консенсус по лечению рака простаты, хотя и ЛТ, и радикальная простатэктомия используются широко [9, 10].

В последние десятилетия были внедрены несколько инновационных приложений: технология 3-мерного конформного облучения, объемная, интенсивно вращаемая модулированная ЛТ, связанная с изображением и наведением пучка, ЛТ с гипофракционированием становятся стандартом в терапии РПЖ [11, 12].

По определению Marusić G. и др. (2010), локально распространенный РПЖ определяют как злокачественный процесс, выходящий за пределы капсулы или семенных везикул, но без отдаленных метастазов или без инвазии лимфоузлов. Опцией выбора является радикальная простатэктомия, наружное облучение (через 1 месяц), интерстициальная имплантация радиоизотопами, гормонотерапия андрогенными блокаторами [13].

Zerini D. и др. (2010) оценили полезность, токсичность и исходы 3Д-конформного облучения у 25 пациентов с РПЖ (сТ1–Т2, баллы по шкале Глиссона < или = 7, первичный уровень ПСА = 7,06 пg/ml) под контролем УЗИ. Они получили дозу 72 Гр за 30 фракций. Однако 28 % пациентов имели острую токсичность I степени, 16 % – II и 1 пациент – III степень. В отдаленном периоде поздняя токсичность наблюдалась у 32 % в виде G1 (первой степени) [14].

Нигwitz М.D. и др. (2011) предлагают проводить трансперитонеальную брахитерапию (45 Гр) простаты с андрогенной депривацией (6 мес.) и наружное облучение (100 Гр) при РПЖ. В Раковом центре Memorial Sloan-Kettering 6-летняя выживаемость составила 96,1 % [15].

Веѕа D.С. и др. (2011) считают, что интенсивность модулированной ЛТ является важным аспектом в лечении рака. С 1997 по 2008 г. 156 пациентов РПЖ были лечены традиционной ЛТ и 121 – интенсивной модулированной ЛТ. Медиана наблюдения составила 46 месяцев (4–120). Общая пятилетняя выживаемость составила 85 %. Биохимическая безрецидивная выживаемость составила при низком, промежуточном и высоком риске 100, 82 и 70 %, соответственно. Для пациентов, получивших ЛТ в дозе 76 Гр, она была равна 83 % по сравнению с 30 % больных, у которых были низкие дозы (р < 0,05). Уринарная и гастроинтестинальная токсичность была низкой, поздние осложнения наблюдались лишь у 3 % больных [1].

Ohzeki Т. и др. (2012) также изучили влияние интенсивной модулированной ЛТ для локализованного и местно-распространенного РПЖ (n=25)

в сравнении с пациентами, которые получили неоадъювантную гормонотерапию (n = 28). Дозы ЛТ варьировали от 70 до 74 Гр. Трехлетняя безрецидивная выживаемость по уровню ПСА была равна 90 % [12].

Септи Ом.А. и др. (2012) провели систематический обзор литературы по использованию терапии спасения после ЛТ при рецидивном РПЖ. По базе MedLine были изучены 112 статей, посвященных криохирургии, фотодинамической терапии и радиочастотной аблации. Авторы не обнаружили специального триала для возможного анализа, однако хорошие перспективы в качестве терапии спасения имела фотодинамическая терапия после ЛТ [16].

Giovanessi L. и др. (2012) изучили отдаленные результаты у пациентов (n = 223) подвергшихся наружному облучению. У всех диагноз был подтвержден гистологически (трансперинеальной биопсией, трансуретральной резекцией). У 151 пациента была ТЗа стадия (экстракапсулярная экспансия) и у 72 — ТЗб (вовлечение семенных сосудов). ЛТ была использована у 201 пациента. Среднее время наблюдения составило 55 мес., 168 были живы (141 не имели рака и 27 человек имели рецидив), 29 пациентов умерло, в том числе 11 — от прогрессирования рака. Авторы полагают, что ЛТ является эффективным и безопасным методом лечения местно-распространенного РПЖ [17].

Арісеllа G. и др. (2014) показали, что послеоперационная ЛТ уменьшает риск биохимического рецидива РПЖ. Были проанализированы результаты у 282 больных. Средняя доза облучения составила 66 Гр (50–72 Гр), а разовая 1,8–2 Гр. Пятилетняя актуариальная биохимическая безрецидивная и общая выживаемость составила 76 и 95 %, соответственно [18].

Govorov A.V. и др. (2014) показали, что хорошим и минимально инвазивным методом лечения при рецидиве РПЖ после ЛТ является криоаблация. Первые опыты в России были проведены в 2010 г. и использованы у 122 пациентов РПЖ (110 в качестве первичной терапии и 12 – в качестве терапии спасения) [19].

Гипофракционная ЛТ имеет потенциальное биологическое преимущество по сравнению с конвенциальным фракционированием. White R. и др. (2015) провели лечение гипофракционным облучением СОД 57 Гр за 19 фракций в течение 3,8 недели. Авторы оценили токсичность ЛТ, которая была незначительной через 3 года (97,6 % не имели выраженной генитоуринарной токсичности) [20].

Falchook A.D. (2015) показал, что больные РПЖ с неблагоприятными патологическими факторами (положительный хирургический край, рТ3) после радикальной простатэктомии, скорее всего,

не излечиваются (> 60 %), лечение только хирургическое. Поэтому необходима адъювантная ЛТ [21].

Davis J. оценил токсичность и биохимические результаты после стереотактической ЛТ. Пациенты были классифицированы на группы риска: низкий (ПСА ≤ 10 ng/ml, T1c-T2a, Глиссон ≤ 6 , n = 189), промежуточный риск (ПСА 10,1-20 ng/ml, T2b-T2c, Глиссон 7, n = 215), и высокий риск (ПСА > 20 ng/ml, Т3 или Глиссон ≥ 8 , n = 33). Все получили ЛТ от 35 до 38 Гр. Среднее время наблюдения составило 20 мес. (ранг: 1-64 мес.). Генитоуринарная и гастроинтестинальная токсичность были минимальными (III степень и более, токсичность не была отмечена). Токсичность I и II степеней была отмечена в 25 и 8 %, соответственно. Медиана ПСА уменьшилась с 5,8 ng/ml (ранг: 0,3-43) до 0,88; 0,4 и 0,3 ng/ml в течение одного года, двух и трех лет. Двухлетняя безрецидивная выживаемость составила для всех пациентов 96,1 % (99,0 % при низком риске, 94,5 % - при промежуточном и 89.8 % – при низком (p < 0.0001) [3].

Safavi-Naeini M. et al. (2015) представили первые экспериментальные результаты от прототипа с высокой мощностью дозы BrachyView, источника системы слежения для брахитерапии на основе вольфрамовых коллиматоров и матрицы кремниевых детекторов высокого разрешения [22].

Fеггеіга А.S. и др. (Бразилия) сравнили два режима лечения – радикальную простатэктомию (n = 65) и брахитерапию (n = 64). При стратификации по лечению выживаемость пациентов, перенесших брахитерапию, была выше (79,70 %), чем после операции (44,30 %), р = 0,0056. Риск биохимического рецидива был выше при операции, чем после брахитерапии, это могло быть связано с высоким уровнем гистологической прогрессии между предоперационной биопсии простаты и образцами ткани. Таким образом, авторы обнаружили, что брахитерапия является хорошей терапевтической опцией для РПЖ с низким риском [23].

Yamaguchi Н. и др. (2016) показали, что 101 пациент РПЖ получили интенсивно модулированную ЛТ в дозе 70–78 Гр. Среднее время наблюдения составило 29 мес., а биохимический рецидив наступил у 10 больных (9,9%) [24].

Кіпд С.R. (2016) считает, что доза, эскалированная ЛТ (70 Гр) в качестве терапии спасения, является довольно эффективной, однако могут остаться микроскопические опухолевые ткани, что подтверждает гипотезу о том, что РПЖ является, по своей сути, радиоустойчивым [25].

Rozet F. и др. (2016) предлагают следовать Национальному руководству Франции, где радикальная простатэктомия и трехмерная конформная ЛТ остаются стандартом лечения локализованного

РПЖ. Умеренное гипофракционирование обеспечивает кратковременный биохимический контроль, сопоставимый с обычным фракционированием. В случае промежуточного риска РПЖ, ЛТ может сочетаться с кратковременной блокадой андрогенов. При высоком риске стандартом лечения остается долгосрочная блокада, особенно метастатического заболевания [7].

Согпford Р. и др. (2016) считают, что рецидив определяется повышением ПСА > 0,2 пg/мл после радикальной простатэктомии и > 2 нг/мл – после лучевой терапии. Позитронно-эмиссионная томография имеет ограниченную ценность, если уровень ПСА менее 1,0 пg/ml, сканирование кости и КТ может быть полезным, при уровне ПСА > 10ng/ml, поэтому авторы предлагают после ЛТ для выявления рецидива проводить мультипараметрическую МРТ и биопсию [26].

Таким образом, обзор последних научных исследований относительно лучевой терапии при раке простаты показал, что имеются еще не решенные и не определенные аспекты. Единый консенсус Американских и Европейских руководств указывает на то, что лучевая терапия является основополагающим методом лечения как локального, так и местно-распространенного рака простаты. Она должна использоваться в контексте с хирургическим и гормональным лечением.

Литература

- Besa D.C.P., Rosso A.R., Bustos C.M. Intensity modulated radiotherapy treatment for prostate cancer, first experience in Chile // Rev Med Chil. 2011. V. 9 (11). P. 1451–7.
- 2. Злокачественные новообразования в России в 2015 г. / под ред. А.Д. Каприна, В.В. Старинского, Г.В. Петровой. М.: МНИОИ им. П. Герцена, 2016. 257 с.
- 3. Davis J., Sharma S., Shumway R. et al. Stereotactic body radiotherapy for clinically localized prostate cancer: Toxicity and biochemical disease-free outcomes from a multi-institutional patient registry // Cureus. 2015. V. 4. № 7 (12). P. 395.
- Hassen W.A., Karsan F.A., Abbas F. et al. Modification and implementation of NCCN guidelines on prostate cancer in the Middle East and North Africa region // J Natl Compr Canc Netw. 2010. V. 8. Suppl. 3. P. 26–8.
- 5. Westover K., Chen M.H., Moul J. et al. Radical prostatectomy vs radiation therapy and androgen-suppression therapy in high-risk prostate cancer // BJU Int. 2012. V. 110 (8). P. 1116–21.
- 6. *Wojcieszek P., Białas B.* Prostate cancer brachytherapy: guidelines overview // J Contemp Brachytherapy. 2012. V. 4 (2). P. 116–20.

- Rozet F., Hennequin C., Beauval J.B. et al. CCAFU french national guidelines 2016–2018 on prostate cancer // Prog Urol. 2016. V. 27. Suppl. 1. P. S95–S143.
- Wilkins A., Mossop H., Syndikus I. et al. Hypofractionated radiotherapy vs conventionally fractionated radiotherapy for patients with intermediate-risk localized prostate cancer: 2-year patient-reported outcomes of the randomised, non-inferiority, phase 3 CHHiP trial // Lancet Oncol. 2015. V. 16. P. 1605–16.
- Qi R., Moul J. High-risk prostate cancer: role of radical prostatectomy and radiation therapy // Oncol Res Treat. 2015. V. 38 (12). P. 639–44.
- 10. Ren W., Sun C., Lu N. et al. Dosimetric comparison of intensity-modulated radiotherapy and volumetric-modulated arc radiotherapy in patients with prostate cancer: a meta-analysis // J Appl Clin Med Phys. 2016. V. 8. № 17 (6). P. 6464.
- 11. *Alongi F., Fiorentino A., De Bari B.* SBRT and extreme hypofractionation: A new era in prostate cancer treatments? Rep Pract Oncol Radiother. 2015. V. 20 (6). P. 411–6.
- Ohzeki T., Adomi S., Koike H. et al. Intensity-modulated radiation therapy (IMRT) for localized and locally advanced prostate cancer: initial result and morbidity // Nihon Hinyokika Gakkai Zasshi. 2012. V. 103 (6). P. 685–90.
- Marusić G., Vojinov S., Levakov I. Treatment of locally advanced prostatic cancer // Med Pregl. 2010. V. 63 (9–10). P. 689–95.
- Zerini D., Jereczek-Fossa B.A., Vavassori A. 3Dconformal hypofractionated radiotherapy for prostate cancer with daily transabdominal ultrasonography prostate localization: toxicity and outcome of a pilot study. // Tumori. 2010. V. 96 (6). P. 941–6.
- 15. Hurwitz M.D., Halabi S., Archer L. et al. Combination external beam radiation and brachytherapy boost with androgen deprivation for treatment of intermediate-risk prostate cancer: long-term results of CALGB 99809 // Cancer. 2011. V. 15. № 117 (24). P. 5579–88.
- 16. *Cerruto M.A., D'Elia C., Artibani W.* Focal salvage therapy for locally recurrent prostate cancer: a review // Urologia. 2012. V. 20; 79 (4). P. 219–231.

- Giovanessi L., Antonelli A., Bastiani N. et al. Radiotherapy in case of locally advanced prostate cancer: long-term follow-up in 223 patients // Urologia. 2012. V. 30. № 79. Suppl. 19. P. 53–7.
- 18. Apicella G., Beldì D., Marchioro G. et al. Postoperative radiotherapy in prostate cancer: Analysis of prognostic factors in a series of 282 patients // Rep Pract Oncol Radiother. 2014. V. 1; 20 (2). P. 113–22.
- Govorov A.V., Vasil'ev A.O., Ivanov VIu. et al. Treatment of prostate cancer using cryoablation: a prospective study // Urologia. 2014. V. (6). P. 69–72.
- White R., Woolf D., Li S. Hypofractionated radiotherapy for localized prostate cancer using three-dimensional conformal radiotherapy technique: 3 years toxicity analysis // Indian J Cancer. 2015. V. 52 (4). P. 654–7.
- Falchook A.D., Chen R.C. Adjuvant vs salvage radiotherapy for patients at high risk for recurrence after radical prostatectomy // Urol Oncol. 2015. V. 33 (11). P. 451–5.
- Safavi-Naeini M., Han Z., Alnaghy S. et al. BrachyView, a novel in-body imaging system for HDR prostate brachytherapy: Experimental evaluation // Med Phys. 2015. V. 42 (12). P. 7098–107.
- 23. Ferreira A.S., Guerra M.R., Lopes H.E. et al. Brachytherapy and radical prostatectomy in patients with early prostate cancer // Rev Assoc Med Bras. 2015. V. 61 (5). P. 431–9.
- 24. *Yamaguchi H., Hori M., Suzuki O. et al.* Clinical significance of the apparent diffusion coefficient ratio in prostate cancer treatment with intensity-modulated radiotherapy // Anticancer Res. 2016. V. 36 (12). P. 6551–6556.
- King C.R. The dose-response of salvage radiotherapy following radical prostatectomy: A systematic review and meta-analysis // Radiother Oncol. 2016. V. 121 (2). P. 199–203.
- Cornford P., Bellmunt J., Bolla M. et al. EAU-ES-TRO-SIOG guidelines on prostate cancer. Part II: Treatment of relapsing, metastatic, and castration-resistant prostate cancer // Eur Urol. 2016. V. 31. P. 0302–2838.