УДК 541.124.7; 548.73,75 (575.2) (04)

ИНФРАКРАСНЫЕ СПЕКТРЫ КРИСТАЛЛОВ $\mathrm{K_2SO_4}$ И $\mathrm{NA_2SO_4}$

Г.С. Денисов – докт. физ.-мат. наук, профессор

У.К. Мамытбеков – мл. научн. сотр.

Исследованы инфракрасные спектры облученных и необлученных кристаллов Na₂SO₄ и K₂SO₄. Установлено, что большинство максимумов поглощения обусловлены анионами SO₄²⁻. Показано, что при облучении кристаллов происходят изменения заряда и состава аниона SO₄²⁻.

Ключевые слова: сульфаты; инфракрасные спектры; кристаллы; вибронные колебания; рентгеновское облучение.

Данное исследование было предпринято с целью получения новых материалов, пригодных для использования в качестве рабочего вещества дозиметров для персональной дозиметрии и радиационного мониторинга территорий. В настоящее время установлено, что ионные кристаллы соединения A_2BX_4 принадлежат к пространственной группе D_h . К ним, в частности, относятся сульфаты калия и натрия.

Кристаллы K_2SO_4 при кристаллизации имеют тригональную структуру с параметрами a = 7,46, b = 10,08, c = 5,78 [1, 2]. Структура Na₂SO₄ принадлежит к той же пространственной группе с параметрами a = 5,607, b = 8,955 и c = 6,967 Å [3, 4]. Комплексы SO₄ в этих кристаллах могут достаточно сильно деформироваться, длина связи S-O колеблется в интервале от 1,368 до 1,496 Å, а углы O-S-O от 105 до 113,5°.

Относительная простота и сходство двух структур побудили нас сопоставить инфракрасные спектры монокристаллов K₂SO₄ и Na₂SO₄.

Монокристаллы сульфатов щелочных металлов Na₂SO₄ и K₂SO₄ были выращены двумя способами – из расплава и методом медленного изотермического испарения при постоянной температуре 42°C из насыщенного водного раствора. Полученные кристаллы были прозрачны в видимой области. В обоих случаях результаты исследований были одинаковы.

Образцы для эксперимента были подготовлены в виде плоско-параллельных пластинок размером примерно $8 \times 4 \times 1$ мм³. Кристаллы подвергались рентгеновскому облучению на установке УРС-70, с рентгеновской трубкой 1БПВ1-60 с ванадиевым антикатодом (U = 55 кB, I = 10 мА). Спектры оптического поглощения были зарегистрированы на ИК-Фурье спектрофотометре IR 200 Thermo Nicolet в интервале 4000–400 см⁻¹.

Спектры инфракрасного поглощения сульфатов натрия и калия состоят из большого количества линий различной интенсивности и полуширины (рис. 1). Несмотря на то, что у них много общего, спектры имеют различия.

Наибольшие различия наблюдаются в области 1500–2100 см⁻¹, причем в области 1500– 1670 см⁻¹ линии спектра поглощения сульфата калия сдвинуты в область меньших волновых чисел по отношению к линиям сульфата натрия (рис. 2).

В области 2000–2350 см⁻¹ спектры накладываются друг на друга (рис. 3).

В спектре монокристалла K_2SO_4 в этом интервале основные линии расположены около 2342, 2329, 2316, 2297, 2278, 2266, 2252, 2233, 2224, 2211, 220, 2200, 2193, 2154, 2149, 2136, 2116, 2099, 2086, 2080 и 2068 см⁻¹. Можно выделить две серии, положения линий в которых с достаточной степенью точности описываются эмпирической формулой

 $v_{n} = v_{oo} + n \cdot \Delta v,$

где п – порядковый номер линии в серии; v_{no} – положение п-й линии в серии в волновых числах; v_{oo} – положение головной линии серии; Δv – средний частотный интервал между соседними линиями данной серии. Головные линии находятся при 2201 и 2080 см⁻¹. Для первой серии частотный интервал составляет 32,5, а для второй – 18,3 см⁻¹. Количество линии в сериях одинаково и равно пяти (рис. 4).

Спектр кристаллов Na₂SO₄ не такой богатый. Наиболее интенсивные максимумы расположены при 2320, 2290, 2240, 1990 см⁻¹, кроме того, имеется несколько более слабых максимумов. Расщепление не наблюдается.

При облучении кристаллов вид спектров поглощения существенно меняется, появляется новый набор линий (рис. 5).

Вестник КРСУ. 2009. Том 9. № 11

Рис. 2. Спектры поглощения кристаллов: 1 – $\mathrm{Na_2SO_4},$ 2 – $\mathrm{K_2SO_4}$ в обл. 1500–1800 см $^{-1}.$

Вестник КРСУ. 2009. Том 9. № 11

Г.С. Денисов, У.К. Мамытбеков. Инфракрасные спектры кристаллов K_2SO_4 и NA_2SO_4

Рис. 3. Спектры поглощения кристаллов: $1-Na_2SO_4, 2-K_2SO_4.$

Рис. 4. Вибронные переходы иона $\mathrm{SO}_4^{\ 2\text{-}}$ в монокристалле $\mathrm{K}_2\mathrm{SO}_4.$

Вестник КРСУ. 2009. Том 9. № 11

155

Рис. 5. Спектры поглощения облученных 1 час кристаллов: 1 – Na₂SO₄, 2 – K₂SO₄.

В необлученных монокристаллах сульфатов лития и натрия колебания комплекса SO₄²⁻ можно описать как колебания отдельных молекул [5]. В этом случае, молекула характеризуется набором собственных колебаний, обусловленных числом ее степеней свободы.

В работе [6] для базовых частот колебаний комплекса SO_4 симметрии T_d приведены значения 981(A₁), 451 (E), 1104 (F₂) и 613 (F₂) см⁻¹, причем только состояния F₂ являются активными в инфракрасной области. Так как правила отбора в кристалле не такие строгие, в его инфракрасном спектре можно наблюдать все четыре основные частоты.

Кроме собственных колебаний молекулы SO₄, в монокристаллах Na₂SO₄ и K₂SO₄ возможны и другие колебания, обусловленные взаимодействием этой молекулы или ее отдельных атомов с ионами Na⁺ и K⁺. Поэтому ИК-спектр этих кристаллов очень насыщен.

Существенное различие спектров поглощения кристаллов Na₂SO₄ и K₂SO₄ в области 1500– 1800 см⁻¹ (смещение максимумов поглощения в низкочастотную область при замене атомов натрия на более тяжелые атомы калия, см. рис. 2), позволяет предположить, что эти полосы поглощения обусловлены валентными колебаниями Me-O, так как частота валентных колебаний K-O меньше частоты Na-O, поскольку атомная масса и ионный радиус калия больше, чем соответствующие параметры натрия. Если кристаллы подвергнуть облучению ионизирующей радиацией, то анионный комплекс изменяется. В работах [7, 8] показано, что разрушение комплекса SO₄²⁻ при облучении может происходить различными путями:

$$SO_4^{2-} \rightarrow SO_3^{2-} + O^0,$$

$$SO_4^{2-} + e^- \rightarrow SO_4^{3-} \rightarrow SO_3^{2-} + O^0$$

или

 $SO_4^{2-} \rightarrow SO_4^{-} + e^{-}$.

Во вновь образованных комплексах валентные расстояния, валентные углы и заряды на атомах по сравнению с SO₄²⁻ также изменяются. Известно [8], что для сложных ионов изменение валентности очень сильно сказывается на местоположении характеристических полос поглощения в ИК-спектре. В частности, увеличение валентности катиона смещает полосы поглощения в область более высоких частот. Вследствие этого спектры облученных кристаллов характеризуются своим набором ИК-линий поглощения, отличающихся от спектров необлученных кристаллов, что и наблюдается в нашем случае (рис. 3).

Выше было показано, что вибронные колебания проявляются в спектрах необлученных кристаллов K_2SO_4 , а в спектрах облученных они отсутствуют. Это значит, что большинство максимумов поглощения обусловлены анионами SO_4^{2-} . При облучении эти комплексы превращаются в другие, не дающие вибронных колебаний.

В отличие от K₂SO₄, в случае необлученных кристаллов Na₂SO₄ электронно-колебательные

Г.С. Денисов, У.К. Мамытбеков. Инфракрасные спектры кристаллов K₂SO₄ и NA₂SO₄

серии не обнаружены, а в спектрах облученных кристаллов они есть (рис. 4). Более того, в спектрах облученных монокристаллов Na_2SO_4 обнаружены две эквидистантные серии:

2116 см⁻¹ + n · 26 см⁻¹ и 2249 см⁻¹ + n · 27,5 см⁻¹.

Очевидно, что они принадлежат не анионным комплексам SO₄²⁻, а другим сернокислородным группировкам, возникающим в результате облучения. Для уточнения полученных результатов необходимо провести дальнейшее исследование.

Литература

- 1. *Eysel W.* Structure und Kristallchemishce Verwandshaft bei Verbundungen $A_2(BX_4)$ und $A(BX_3)$: Dissertation-Aachen, 1971. 167 S.
- Абдулсабиров Р.К., Грезнев Ю.С., Зарипов М.М. Электронный парамагнитный резонанс ионов Cu²⁺ в K₂SO₄ // ФТТ. – 1970. – Т. 12. – №12. – C. 257–259.
- Eyse W., Höfer H.H., Keester K.L., Hahn Th. Crystal chemistry and structure of Na₂SO₄ and its solid solutions // Acta Crystallogr. 1985. V. 43. B41. №1. P. 5–11.

- 4. *Александров К.С., Безносиков Б.В.* Структурные фазовые переходы в кристаллах. – М.: Наука, 1992. – С. 7–22.
- Бургина Б.Е., Пономарева В.Г., Балтахинов В.П., Костровский В.Г. Спектроскопическое исследование строения и механизма протонной проводимости CsHSO₄ и композитов CsHSO₄ / SiO₂ // Журнал структурной химии. – 2005. – Т. 46. – №4, июль-август. – С. 630–640.
- Kishan Kumar V.S., Acharyulu B.S.V.S.R. and Sastry S.B.S. Absorption, Emission and Thermoluminescence of Copper Doped Alkali Sulphate Phosphors // Phys. Stat. Sol. (b). 1993. 175. P. 287–297.
- Нурахметов Т.Н., Мурзахметов М.К., Акижанов Р.Н., Амандосов А.Т. Радиационные дефекты в облученном K₂SO₄-Cu // Оптика и спектроскопия. – 1999. – Т. 86. – №4. – С. 619–620.
- 8. Osman M.A., Hefni M.A., Mahfous R.M. and Ahmad M.M. Spectroscopic Studies and electrical conductivity Behavior of γ-Irradiated Li₂SO₄-Na₂SO₄ Mixed System // Radiation Effects & Defects in Solids. – 2001. – Vol. 153. – P. 115–138.