

О зависимости между временем удвоения веса новорожденных и содержанием белка в материнском молоке.

Эта биологическая закономерность без сомнения имеет весьма важное значение для понимания процессов роста и долголетия организмов и, видимо, при достаточной информированности о биологических механизмах и, даже о биостатистических численных данных, может быть использована в регулировании количественных изменений как массы тела, так и сроков жизнедеятельности.

В качестве одного из приемов решения данной проблемы мы решили использовать математическое моделирование с попыткой выявления его физиолого — биохимического смысла, для чего необходимо было получить среднестатистические данные о подобной связи между вышеуказанными параметрами, которые можно было с большой вероятностью найти в медико-биологической и биометрической литературе

На основании этих изысканий была составлена таблица средних величин с параметрами биометрических составляю их нижеследую у значений.

 Таблица

 Значения времени удвоения веса тела новорожденных и содержания белка в молоке матерей.

№ п/п	Вид организма	X1	Y	YI	ΔΥ	Δ Y ²	\mathbf{Y}_{I}	ΔY_I	ΔY^2
1	Крольченок	14,5	6	5	-1	1	5,04		
2	Үенок	7,1	8	11	+3	9	11,36		
3	Ягненок	6,5	10	13	+3	9	12,64		
4	Поросенок	5	18	18	-	0	17,63		
5	Козленок	4,3	19	22	+3	9	21,61		
6	Теленок	3,5	47	29	-18	324	29,13		
7	Жеребенок	2	60	84	+24	576	83,75		
8	Ребенок	1,6	180	167	-12	144	167,51		
9	Итого	44,5	348	349	+1	1072	347,66		

где X – содержание белка в молоке матерей, %

Y – число дней удвоения веса тела,

△ - отклонения вычисленных величин от измеренных

Анализ и математическая обработка данных таблицы показывает, что одной из приемлемых моделей выявляемой связи является функция

$$Y_I = \frac{67}{x - 1.2}$$

где Y_I – число дней удвоения веса тела, X – содержание белка в молоке матерей, %.

Решения по данной модели приведены в таблице в графе $Y_{\rm I}$

Отношение корня квадратного из суммы квадратов отклоненной к обуему числу дней удвоения (итого, Y) т. е.

$$\frac{\sqrt{1072}}{348} = \frac{32,741411}{348} = 0,0940845 \approx 9,4\%$$

равно 9,4 %, что условно можно считать вариацией исследуемых величин, а так называемая точность определения будет равна

$$1 - 0.094 = 0.906 \approx 91\%$$

Эти расчеты показывают, что вышеназванная зависимость в данной группе организмов и, как можно экстраполировать на иные организмы подобных млекопитаю уих, данная биологическая закономерность имеет место и может быть выражена приведенной выше функцией.

Попытка выявления физического смысла полученной зависимости показывает, что критической величиной концентрации белка в организме матерей является 1,2%, ниже которой организмы не развиваются, а при указанной величине теоретически организмы будут развиваться неопределенно долго $(y \to \infty)$ что биологически будет иметь смысл, при фактическом значении концентрации белка в молоке достаточно близком к 1,2 %, особенно наглядно представленном для человеческого организма (ребенок, 1,6%).

Можно сделать вывод, что указанная закономерность выраженная в виде приведенной функции может стать основаниям для проведения практических исследований, направленных на достижение многих целей при развитии организмов разных видов, в частности, продления жизни.

Литература:

- 1. Справочник зоотехника. Гос. издат. с х литературы М. 1957, 936 с.
- 2. Медицинская энциклопедия. М. 1975
- 3. Голышева К. П., Гальперин С. Н. Физиология человека и животных. Советская наука М. 1956
- 4. Викторов К. Р. Физиология сельскохозяйственных животных. Высшая школа. М. 1960
- 5. Терентьев П. В., Ростова Н.С. Практикум по биометрии. Л. 1977