УДК.: 004.7

СТРУКТУРНАЯ МОДЕЛЬ ВЫЧИСЛИТЕЛЬНЫХ СЕТЕЙ ПЕТРИ

Асанов М.С., Асанова С.М., Сатаркулов К.А. КГТУ им. И.Раззакова

Описывается структурная модель вычислительных сетей Петри, являющаяся обобщением и дальнейшим развитием самомодифицируемых и алгебраических сетей Петри и обладающая универсальной вычислительной возможностью для обработки символьночисловой информации.

The structural model of computer Petri networks being generalization and the further development of self-modified and algebraic Petri networks and possessing a universal computing opportunity for symbol-numerical information processing is described in this article.

Введение. Современные технические системы, в частности системы электроэнергетики, относятся к классу сложных систем, которые обладают следующими свойствами: большое количество компонентов и сложные связи между ними; переменная структура системы, т.е. количество компонентов и связи между ними могут меняться во время ее функционирования; компоненты могут быть непрерывными, дискретными или непрерывно-дискретными (гибридными), и могут иметь различную физическую природу; между компонентами могут быть как физические, так и информационные связи, и т.д.

Получить единую математическую модель сложных систем и процессов, учитывающую вышеперечисленные свойства, часто не удается. Если даже удается ее как-то получить, то она, как правило, обладает большой размерностью (вычислительной трудоемкостью), и в ней с трудом угадывается структура исследуемых объектов, что приводит к значительным трудностям при получении правильной интерпретации результатов вычислений.

Одним из мощных средств, применяемых для построения структурноподобных и удобных с позиций интерпретации и реализации на ЭВМ моделей сложных систем и процессов, является аппарат сетей Петри (СП). Однако ограниченность их вычислительных возможностей относится к серьезным недостаткам существующих расширений СП [1]-[3].

В связи с этим, в настоящей работе предлагается новое расширение СП – вычислительная сеть Петри (ВСП), являющаяся обобщением и дальнейшим развитием самомодифицируемых [1], [2], алгебраических [3], и ранее нами предложенных расширений [4], [5] СП, и обладающая универсальной вычислительной возможностью для обработки символьно-числовой информации.

Изложение ВСП проводится по следующей схеме:

- структурная модель ВСП (излагается в настоящей работе);
- вычислительные компоненты, язык описания и правила функционирования ВСП (излагаются в [6]).

Формальное описание ВСП, как динамической сети, дается ниже, по аналогии со схемой описания обычных сетей Петри:

- дается формальное определение статической сетевой структуры ВСП;
- вводится, на основе статической структуры, динамическая сетевая структура ВСП.

1. Статическая сетевая структура ВСП

Здесь дается формальное определение статической сетевой структуры ВСП, а также описание и условно-графические обозначения ее элементов.

Определение 1. Статической сетевой структурой ВСП называется структура, отражающая только статическую топологию исследуемого процесса или системы, и формально определяется как набор:

$$C_c = ((P, \Lambda, \Psi, T, E), D, \Omega, \Phi, W). \tag{1}$$

В этом наборе:

1) P - множество позиций, предназначенных для моделирования состояния сети:

$$P = P_p \cup P_q \cup P_s, \quad P \neq \emptyset, \tag{2}$$

$$\begin{split} P_p &= \{p_i \middle| i \in I_p\}, \quad I_p &= \{1, \, 2, \, ..., \, n_p\}, \quad \left| P_p \middle| = n_p, \, P_q = \{q_i \middle| i \in I_q\}, \quad I_q = \{1, \, 2, \, ..., \, n_q\}, \quad \left| P_q \middle| = n_q, \right. \\ P_s &= \{s_i \middle| i \in I_s\}, \quad I_s = \{1, \, 2, \, ..., \, n_s\}, \quad \left| P_s \middle| = n_s, \right. \end{split}$$

где P_p - множество дискретных (целочисленных) позиций; P_q - множество непрерывных (вещественных) позиций; P_s - множество символьных позиций; условно-графическое обозначение (УГО) показано в таблице, п.1.

Условно-графические обозначения элементов статической сетевой структуры ВСП.

	УГО	Теоретико-множественное описание	Наименование
1	<i>x</i> O	$x \in P = P_p \cup P_q \cup P_s$	Позиция
2	<i>x</i> •	$x \in \Lambda$	Позиция логических констант
3	& _() ~ s _i	& $s_i \in \Psi$, $s_i \in S \subset P_s$	Указатель на позицию
4	t_j	$t_j \in T$	Переход
5	$x \longleftrightarrow t_j$	$(x,t_{j})\in E_{\Lambda}\subset E^{(+)},$ где $x\in\Lambda$, $t_{j}\in T$	Логическая дуга (x, t_j)
6	$x \longrightarrow t_j$	$ (x,t_j) \in E^{(+)}, $ где $x \in P$, $t_j \in T$	Дуга (x, t_j)
7	$t_j \longrightarrow \mathbf{O} x$	$(t_j, \ x) \in E^{(-)},$ где $x \in P$, $t_j \in T$	Дуга (t_j, x)
8	& $s_i \bigcirc \longrightarrow t_j$	$(\&s_i,t_j)\in E^{(+)},$ где $\&s_i\in\Psi,t_j\in T$	Дуга (& s_i , t_j)
9	$t_j \longrightarrow (&s_i $	$(t_j, \ \& \ s_i) \in E^{(-)},$ где $t_j \in T$, $\ \& \ s_i \in \Psi$	Дуга $(t_j, \& s_i)$
10	<i>d</i> 🔘	$d \in D = D_p \cup D_q \cup D_s$	Позиция для хранения констант
11	Ø	$\omega \in \Omega$	Знак функции

12	x_1 x_i x_k	$(\omega, x_1,, x_i,, x_k) \in \Phi$	Структура интерпретируемых формул
13	$x \xrightarrow{x_1} y$ $x_i \xrightarrow{x_k} y$	$((x, y), (\omega, x_1,, x_i,, x_k)) \in W$ $(x, y) \in E, (\omega, x_1,, x_i,, x_k) \in \Phi$ $\omega \in \Omega, x_i \in (P \cup \Psi \cup D), \forall i$	Структура вычисл. элемента для разметки дуг (x, y)

2) А - двухэлементное множество позиций логических констант:

$$\Lambda = \{\lambda_0, \lambda_1\}, \quad \lambda_0 = 0, \quad \lambda_1 = 1, \tag{3}$$

где λ_0, λ_1 интерпретируются соответственно как «ложь», «истина»; УГО-табл., п.2.

3) Ч - множество позиций-указателей:

$$\Psi = \Psi_p \cup \Psi_q \cup \Psi_s,$$

$$\Psi_p = \{ \& \ s_i \middle| \ s_i \in S_p \subset P_s \}, \qquad \Psi_q = \{ \& \ s_i \middle| \ s_i \in S_q \subset P_s \},$$

$$\Psi_s = \{ \& \ s_i \middle| \ s_i \in S_s \subset P_s \}, \qquad S_p \cap S_q \cap S_s = \emptyset, \qquad S = S_p \cup S_q \cup S_s \subset P_s,$$

$$(4)$$

где Ψ_p, Ψ_q, Ψ_s - множества указателей соответственно на дискретные $p_i \in P_p$, непрерывные $q_i \in P_q$ и символьные $s_i \in P_s$ позиции; & s_i - формула указателя; где s_i - символьная позиция, моделирующая память указателя, а & - операция макроподстановки, осуществляющая подстановку содержимого x памяти s_i в качестве позиции x вместо самого указателя & s_i , иначе говоря, указатель & s_i превращается в позицию с именем x; S – подмножество множества P_s символьных позиций для организации памяти указателей; УГО – табл., п.3.

4) T - множество переходов, предназначенных для моделирования событий в сети:

$$T = \{t_j | j \in I_T\}, \quad I_T = \{1, 2, ..., n_T\}, \quad T \neq \emptyset, \quad |T| = n_T,$$
 (5)

УГО – табл., п.4.

5) E - отношение инцидентности позиций, указателей и переходов, т.е. множество дуг сети:

$$E = E_{\Lambda} \cup (E_{p} \cup E_{q} \cup E_{s}) \cup (E_{\Psi_{p}} \cup E_{\Psi_{q}} \cup E_{\Psi_{s}}) \subseteq ((\Lambda \cup P \cup \Psi) \times T) \cup (T \times (P \cup \Psi)),$$

$$E_{\Lambda} = \{(x_{j}, t_{j}) \mid j \in I_{T}\} \subseteq \Lambda \times T, \quad x_{j} \in \Lambda, \quad t_{j} \in T, \quad |E_{\Lambda}| = |T| = n_{T},$$

$$E_{p} \subseteq (P_{p} \times T) \cup (T \times P_{p}), \quad E_{q} \subseteq (P_{q} \times T) \cup (T \times P_{q}), \quad E_{s} \subseteq (P_{s} \times T) \cup (T \times P_{s}),$$

$$E_{\Psi_{p}} \subseteq (\Psi_{p} \times T) \cup (T \times \Psi_{p}), \quad E_{\Psi_{q}} \subseteq (\Psi_{q} \times T) \cup (T \times \Psi_{q}), \quad E_{\Psi_{s}} \subseteq (\Psi_{s} \times T) \cup (T \times \Psi_{s}),$$

$$(6)$$

где E_{Λ} - отношение инцидентности позиций логических констант $x_j \in \Lambda$ и переходов $t_j \in T$ (множество логических дуг); E_p - отношение инцидентности дискретных позиций $p_i \in P_p$ и переходов $t_j \in T$ (множество дискретных дуг); E_q - отношение инцидентности непрерывных позиций $q_i \in P_q$ и переходов $t_j \in T$ (множество непрерывных дуг); E_s - отношение инцидентности символьных позиций $s_i \in P_s$ и переходов $t_j \in T$ (множество символьных дуг); E_{Ψ_p} - отношение инцидентности указателей & $s_i \in \Psi_p$ на дискретные позиции $s_i \in P_p$ и переходов

 $t_j \in T$ (множество дуг — указателей на дискретные позиции); E_{Ψ_q} — отношение инцидентности указателей & $s_i \in \Psi_q$ на непрерывные позиции $x \in P_q$ и переходов $t_j \in T$ (множество дуг — указателей на непрерывные позиции); E_{Ψ_s} — отношение инцидентности указателей & $s_i \in \Psi_s$ на символьные позиции $x \in P_s$ и переходов $t_i \in T$ (множество дуг — указателей на символьные позиции).

Как видно из (6), множество дуг E разделяется на три непересекающиеся подмножества E_{\wedge} , $E^{(+)}$ и $E^{(-)}$:

 $E = E_{\Lambda} \cup E^{(+)} \cup E^{(-)}, \quad E_{\Lambda} \subseteq \Lambda \times T, \quad E^{(+)} \subseteq (P \cup \Psi) \times T, \quad E^{(-)} \subseteq T \times (P \cup \Psi),$ (7) где E_{Λ} - множество логических дуг (x, t_{j}) , ориентированных от позиций логических констант $x \in \Lambda$ к переходам $t_{j} \in T$;

 $E^{(+)}$ - множество входных дуг;

- $E^{(-)}$ множество выходных дуг. Входные дуги $(x,t_j) \in E^{(+)} \subseteq (P \cup \Psi) \times T$ ориентированы от позиций и указателей $x \in (P \cup \Psi)$ к переходам $t_j \in T$, а выходные дуги $(t_j,x) \in E^{(-)} \subseteq T \times (P \cup \Psi)$ от переходов $t_j \in T$ к позициям и указателям $x \in (P \cup \Psi)$. УГО табл., п. 5 9.
- **6)** (P, Λ, Ψ, T, E) описанный в (2) (7) набор, определяющий статическую сетевую структуру обычных сетей Петри с той лишь разницей, что здесь множество позиций P разбито на типы P_p, P_q, P_s и введено двухэлементное множество позиций логических констант Λ и множество указателей Ψ . Обобщенная структурная схема данного набора показана на рис. 1.

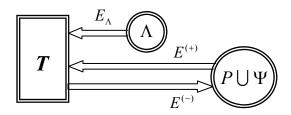


Рис. 1. Обобщенная структурная схема набора (P, Λ, Ψ, T, E) .

Для полного определения статической сетевой структуры ВСП необходимо ввести дополнительные множества D, Ω, Φ, W , описание которых приведено ниже.

7) D - множество позиций, предназначенных для хранения предметных констант. Это множество, как и P из (2), разбито на три типа подмножеств:

$$D = D_p \cup D_q \cup D_s \,, \tag{8}$$

где D_p, D_q, D_s - множества соответственно дискретных, непрерывных и символьных позиций; УГО – табл., п.10.

8) Ω - множество всевозможных знаков стандартных и собственных функций (арифметических, логических, предикатных и т.д.):

$$\Omega = \Omega_{\Lambda} \cup \Omega_{p} \cup \Omega_{q} \cup \Omega_{s} , \qquad (9)$$

где $\Omega_{\Lambda}, \Omega_{p}, \Omega_{q}, \Omega_{s}$ - множества знаков функций для вычисления разметок соответственно логических $(x,y) \in E_{\Lambda}$, дискретных $(x,y) \in (E_{p} \cup E_{\Psi_{p}})$, непрерывных $(x,y) \in (E_{q} \cup E_{\Psi_{q}})$, символьных $(x,y) \in (E_{s} \cup E_{\Psi_{s}})$ дуг сети; УГО – табл., п. 11.

9) Ф - множество структур интерпретируемых формул:

$$\Phi = \Phi_{\Lambda} \cup \Phi_{p} \cup \Phi_{q} \cup \Phi_{s},$$

$$\Phi_{\Lambda} \subseteq \Omega_{\Lambda} \times \left[\bigcup_{k=1}^{a} (P \cup \Psi \cup D)^{k}\right], \quad \Phi_{p} \subseteq \Omega_{p} \times \left[\bigcup_{k=1}^{a} (P \cup \Psi \cup D)^{k}\right],$$

$$\Phi_{q} \subseteq \Omega_{q} \times \left[\bigcup_{k=1}^{a} (P \cup \Psi \cup D)^{k}\right], \quad \Phi_{s} \subseteq \Omega_{s} \times \left[\bigcup_{k=1}^{a} (P \cup \Psi \cup D)^{k}\right],$$
(10)

где $\Phi_{\Lambda}, \Phi_{p}, \Phi_{q}, \Phi_{s}$ - множества структур интерпретируемых формул, необходимых для задания зависимости разметок соответственно логических $(x,y) \in E_{\Lambda}$, дискретных $(x,y) \in (E_{p} \cup E_{\Psi_{p}})$, непрерывных $(x,y) \in (E_{q} \cup E_{\Psi_{q}})$, символьных $(x,y) \in (E_{s} \cup E_{\Psi_{q}})$ дуг от текущего состояния позиций P сети.

Элементы множества структур интерпретируемых формул Ф представляют собой кортеж:

$$(\omega, x_{i_1}, x_{i_2}, ..., x_{i_k}), \quad \omega \in \Omega, \quad x_i \in (P \cup \Psi \cup D), \quad \forall i = 1, 2, ..., k, k = 1, 2, ..., a,$$
 (11) где УГО — табл., п. 12.

10) W - однозначное отображение, сопоставляющее каждой дуге $(x,y) \in E$ вполне определенную (единственную) структуру из множества структур интерпретируемых формул Φ для установки зависимости разметки данной дуги от состояния сети:

$$W: E \to \Phi \,. \tag{12}$$

С учетом выражений (6), (10), отображение (12) можно записать в развернутой форме с учетом типов размечаемых дуг сети:

$$W = W_{\Lambda} \cup W_{p} \cup W_{q} \cup W_{s} \tag{13}$$

$$W_{\scriptscriptstyle \Lambda}: E_{\scriptscriptstyle \Lambda} \to \Phi_{\scriptscriptstyle \Lambda}, \ W_p: (E_p \bigcup E_{\Psi_p}) \to \Phi_p, \ W_q: (E_q \bigcup E_{\Psi_q}) \to \Phi_q, \ W_s: (E_s \bigcup E_{\Psi_s}) \to \Phi_s.$$

С учетом ориентации дуг (7) множество W можно разбить на три непересекающиеся подмножества:

$$W = W_{\Lambda} \cup W^{(+)} \cup W^{(-)}, \tag{14}$$

где $W^{(+)}, W^{(-)}$ - отображения, соответствующие входным и выходным дугам соответственно.

3десь элементы множества W представляют собой кортеж:

$$((x, y), (\omega, x_{i_1}, x_{i_2}, ..., x_{i_k})_{(x,y)}) \in W, (x, y) \in E, \quad (\omega, x_{i_1}, x_{i_2}, ..., x_{i_k})_{(x,y)} \in \Phi, \qquad (15)$$
 где УГО — табл., п. 13.

Таким образом, статическая сетевая структура ВСП C_c описывается выражениями (1) — (15), а условно-графические обозначения элементов приведены в таблице, на основе которых и составляется любая статическая сетевая структура ВСП. Обобщенная структурная схема ВСП показана на рис. 2, который является расширением рис. 1.

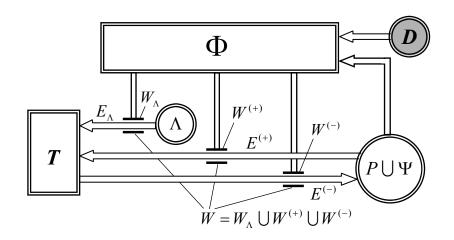


Рис. 2. Обобщенная структурная схема ВСП, полученная на основе набора (P, Λ, Ψ, T, E) (рис.1) и дополнительно введенных множеств D, Ω, Φ, W .

Отметим, что имена элементов множеств P, Λ , T, D являются элементами множества всех цепочек (слов) над алфавитом A:

$$P, \Lambda, T, D \subset A^+, \qquad A^+ = A^* \setminus \{\varepsilon\},$$
 (16)

где A^* - множество всех цепочек (слов) над алфавитом $A = \{A, B, C, ..., a, b, c, ..., 0, 1, 2, ..., 9, ...\}$, включая пустую цепочку ε , т.е. цепочку, не содержащую ни одного символа.

2. Динамическая сетевая структура ВСП

Здесь дается формальное определение динамической сетевой структуры ВСП и необходимые понятия, используемые для описания вычислительных компонент и правил функционирования ВСП [6].

<u>Динамическая сетевая структура</u> формулируется следующим образом:

Определение 2. Динамической сетевой структурой ВСП называется совокупность $C = (C_c, \mu, \sigma)$, образованная из статической сетевой структуры C_c , маркировок μ , σ позиций соответственно P, D и которая может быть записана как:

$$C = (((P, \Lambda, \Psi, T, E), D, \Omega, \Phi, W), \mu, \sigma, \gamma).$$

$$(17)$$

В этом наборе:

- 1) $((P, \Lambda, \Psi, T, E), D, \Omega, \Phi, W)$ статическая сетевая структура C_c , описанная в предыдущем разделе;
 - **2)** μ маркировка позиций P (моделирование состояния позиций сети):

$$\mu = \mu_p \cup \mu_q \cup \mu_s \cup \mu_D, \tag{18}$$

$$\mu_p: P_p \to N, \quad N = \{0, 1, 2, ...\},$$
 (19)

$$\mu_q: P_q \to R, \quad R = (-\infty, +\infty),$$
 (20)

$$\mu_s: P_s \to A^*, \tag{21}$$

где $\mu_{\scriptscriptstyle p}$ - маркировка дискретных позиций $P_{\scriptscriptstyle p}$;

 $\mu_{\scriptscriptstyle q}$ - маркировка непрерывных позиций $P_{\scriptscriptstyle q}$;

 μ_s - маркировка символьных позиций P_s ;

 μ_{D} - маркировка позиций D, предназначенных для хранения предметных констант;

N – множество всех натуральных чисел (включая ноль);

R — множество всех вещественных чисел.

Поскольку для организации памяти множества указателей Ψ (4) выделено из множества символьных позиций P специальное подмножество S:

$$S = S_p \cup S_q \cup S_s \subset P_s, \tag{22}$$

то следует детализировать отображение μ_s из (21) с учетом (22):

$$\mu_{S} = \mu_{S_{p}} \cup \mu_{S_{q}} \cup \mu_{S_{s}} \cup \mu_{P_{s} \setminus S} \tag{23}$$

$$\mu_{S_p}: S_p \to P_p \cup \{\varepsilon\}, \ (P_p \cup \{\varepsilon\}) \subset A^*,$$
 (24)

$$\mu_{S_a}: S_q \to P_q \cup \{\varepsilon\}, \ (P_q \cup \{\varepsilon\}) \subset A^*,$$
 (25)

$$\mu_{S_s}: S_s \to P_s \cup \{\varepsilon\}, \ (P_s \cup \{\varepsilon\}) \subset A^*,$$
 (26)

$$\mu_{P \setminus S} : (P_s \setminus S) \to A^*, \tag{27}$$

где μ_{S_p} - маркировка символьных позиций $S_p \subset P_s$, предназначенных для организации памяти указателей Ψ_p на дискретные позиции P_p ;

 μ_{S_q} - маркировка символьных позиций $S_q \subset P_s$, предназначенных для организации памяти указателей Ψ_q на непрерывные позиции P_q ;

 μ_{S_s} - маркировка символьных позиций $S_s \subset P_s$, предназначенных для организации памяти указателей Ψ_s на символьные позиции P_s ;

 $\mu_{P_s \setminus S}$ - маркировка обычных символьных позиций $P_s \setminus S$.

Отметим, что все вышеописанные маркировки (18) - (23) являются однозначными функциональными отображениями. На основе их ниже даются определения таких понятий как состояние позиций, состояние сети, состояние указателей, используемых при описании правила функционирования ВСП в [6].

Определение 3. Множество $\mu_p(P_p)$:

$$\mu_p(P_p) = \{ \mu_p(p_i) | p_i \in P_p \}$$
 (28)

называется состоянием множества дискретных позиций $P_p = \{p_i | i \in I_p\}$, если данное множество $\mu_p(P_p)$ является образом функционального отображения (19):

$$\mu_p(P_p) \subset N = \{0, 1, 2, ...\}, \qquad |\mu_p(P_p)| = |P_p| = |I_p| = n_p$$
 (29)

где μ_p - функциональное отображение (19), сопоставляющее каждой позиции $p_i \in P_p$ однозначно определенное число $\mu_p(p_i) \in N$; $\mu_p(p_i)$ - состояние (иначе – маркер) дискретной позиции $p_i \in P_p$.

Определение 4. Множество $\mu_q(P_q)$:

$$\mu_q(P_q) = \{ \mu_q(q_i) | q_i \in P_q \}$$
(30)

называется состоянием множества непрерывных позиций $P_q = \{q_i | i \in I_q\}$, если данное множество $\mu_q(P_q)$ является образом функционального отображения (20):

$$\mu_q(P_q) \subset R = \{-\infty, +\infty\}, \quad |\mu_q(P_q)| = |P_q| = |I_q| = n_q$$
 (31)

где μ_q - функциональное отображение (20), сопоставляющее каждой позиции $q_i \in P_q$ однозначно определенное число $\mu_q(q_i) \in R$;

 $\mu_{q}(q_{i})$ - состояние (иначе — маркер) непрерывной позиции $q_{i} \in P_{q}$.

Определение 5. Множество $\mu_s(P_s)$:

$$\mu_{s}(P_{s}) = \{\mu_{s}(s_{i}) | s_{i} \in P_{s}\}$$
(32)

называется состоянием множества символьных позиций $P_s = \{s_i | i \in I_s\}$, если данное множество $\mu_s(P_s)$ является образом функционального отображения (21):

$$\mu_{s}(P_{s}) \subset A^{*}, \quad |\mu_{s}(P_{s})| = |P_{s}| = |I_{s}| = n_{s}$$
 (33)

где μ_s - функциональное отображение (21), сопоставляющее каждой позиции $s_i \in P_s$ однозначно определенную цепочку (слово) $\mu_s(s_i) \in A^*$;

 $\mu_s(s_i)$ - состояние (иначе — маркер) символьной позиции $s_i \in P_s$.

Определение 6. Множество $\mu(P)$:

$$\mu(P) = \{\mu(x) | x \in P\} \tag{34}$$

называется состоянием сети C (17), т.е. состоянием множества позиций $P = P_p \cup P_q \cup P_s$ (2), если данное множество $\mu(P)$ является объединением множеств $\mu_p(P_p)$, $\mu_q(P_q)$, $\mu_s(P_s)$, описанных в (28) – (33):

$$\mu(P) = \mu_p(P_p) \cup \mu_a(P_a) \cup \mu_s(P_s), \qquad (35)$$

где μ - маркировка позиций из множества P, описанная в (18).

На основе описанных в (4), (18) - (27) и *определений 3–6* ниже даются определения указателя и состояния указателя.

Определение 7. Указатель & $s_i \in \Psi$ называется указателем на позицию $x \in P$, т.е.

$$\& s_i = x, \tag{36}$$

если состояние $\mu_s(s_i)$ памяти $s_i \in S$ (22) данного указателя & s_i равно имени x указываемой позиции, т.е.

$$\mu_s(s_i) = x$$
, $x \in P \subset A^*$, $P = P_p \cup P_a \cup P_s$, $s_i \in S \subset P_s$, (37)

при этом & s_i называется указателем:

- на дискретную позицию, если $s_i \in S_p \subset S$ и $\mu_s(s_i) \in P_p \subset A^*$;
- на непрерывную позицию, если $s_i \in S_q \subset S$ и $\mu_s(s_i) \in P_q \subset A^*$;
- на символьную позицию, если $s_i \in S_s \subset S$ и $\mu_s(s_i) \in P_s \subset A^*$.

Определение 8. Состоянием указателя & s_i , обозначаемым через $\mu(\&s_i)$, называется состояние позиции $x \in P$, имя которой является содержимым памяти s_i данного указателя, т.е.

$$x = \mu(s_i) \in P \subset A^* \,, \tag{38}$$

$$\mu(\&s_i) = \mu(x), \tag{39}$$

где (38) — определяет состояние (содержимое) памяти s_i указателя;

(39) – определяет состояние указателя.

На рис. 3 приведено пояснение к определениям 7 и 8.

3) μ_D - маркировка позиций D, предназначенных для хранения предметных констант:

$$\mu_D = \sigma_p \cup \sigma_q \cup \sigma_s, \quad \sigma_p : D_p \to N, \quad \sigma_q : D_q \to R, \quad \sigma_s : D_s \to A^*.$$
 (40)

4) γ - маркировка переходов T (моделирование состояния переходов сети):

$$\gamma: T \to \{0, 1\}. \tag{41}$$

Здесь γ является функциональным отображением, сопоставляющим каждому переходу $t_j \in T$ однозначно определенный элемент из двухэлементного множества $\{0,1\}$, где элементы 0, 1 интерпретируются соответственно, как «ложь», «истина».

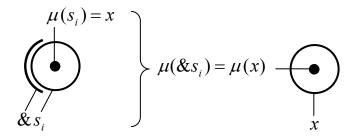


Рис.3. Пояснение к определениям 7 и 8,

где • - маркированная позиция; • - маркер.

Определение 9. Переход $t_j \in T$ называется активным (разрешенным на срабатывание), если его состояние — «истина», т.е. $\gamma(t_j) = 1$, в противном случае, когда его состояние — «ложь», т.е. при $\gamma(t_j) = 0$, переход t_j называется пассивным (запрещенным на срабатывание).

Заключение. Предложенная в настоящей работе расширенная модель сетей Петри — модель вычислительных сетей Петри, в сравнении с существующими [1] — [5], имеет следующие дополнительные вычислительные возможности:

- наличие позиций различных типов, т.е. числовых (дискретных P_p , непрерывных P_q) $P_p \cup P_q$ и символьных P_s , позволяет осуществлять обработку символьно-числовой информации;
- наличие указателей на различные типы позиций позволяет реализовать задачи, связанные с произвольной выборкой позиций из заданного множества, а также моделировать системы с перестраиваемой структурой;
- наличие позиций логических констант, введенных для проверки активности на срабатывание переходов, позволяет достаточно легко разрешать проблемы конфликтов в ВСП.

Литература

- 1. Котов В.Е. Сети Петри. М.: Наука, Главная редакция физико-математической литературы, 1984.
- 2. Питерсон Дж. Теория сетей Петри и моделирование систем: Пер. с англ. М.: Мир,1984.
- 3. Лескин А.А., Мальцев П.А., Спиридонов А.М. Сети Петри в моделировании и управлении. Л.: Наука, 1989.
- 4. Асанов М.С., Асанова С.М., Сатаркулов К.А. Вычислительные сети Петри для

- структурно подобного моделирования сложных физико-технических систем. Вестн. КНУ им. Ж.Баласагына. Сер. 3. Физ. и физ. образование: достижения и перспективы развития. Б., 2006.-Вып. 3. С. 103-111.
- 5. Асанов М.С., Асанова С.М., Сатаркулов К.А. Моделирующие возможности вычислительных сетей Петри и их использование в решении задач электроэнергетики. НАН КР. Доклады II Международной конференции: Проблемы управления и информатики. Б., 2007. С.223-227.
- 6. Асанов М.С., Асанова С.М., Сатаркулов К.А. Вычислительные компоненты, язык описания и правила функционирования вычислительных сетей Петри. Настоящий сборник.