Зиялиев К.Ж., Такырбашев А.Б., Жакыпов Н.Ж., Касым уулу А.

ЫГУ им. К. Тыныстанова

КИНЕМАТИЧЕСКИЙ АНАЛИЗ ВЫХОДНОГО ЗВЕНА ПЯТИЗВЕННОГО МЕХАНИЗМА

В данной работе проведен кинематический анализ пятизвенного механизма по диаграммам, которые построены с помощью выведенных уравнений.

В работах [1, 2, 3] были составлены уравнения для определения скоростей и ускорений всех схем шарнирно-четырехзвенных механизмов переменной структуры. Воспользовавшись методикой расчета данной работы, можем определить скорость и ускорение ползуна. Для этого построим расчетную схему коромысла, имеющего эвольвентную кривую, которая представлена на рис. 1.

Рис. 1. Эвольвентная кривая расчетной схемы коромысла

Из прямоугольного треугольника ДПП_о получим следующие формулы для определения $L_{\mathcal{B}B}$ и $\boldsymbol{\varphi}_{_{3R}}$:

$$L_{_{\mathcal{B}B}} = \sqrt{(L_{_{\mathcal{B}B}})^2 + (R_{_{\mathcal{B}B}})^2}; \qquad (1)$$

$$\varphi_{_{3R}} = arctg\left(\frac{R_{_{3B}}}{L_{_{3B}}}\right), \tag{2}$$

где $L_{\Pi A}$ – расстояние между опорой коромысла Д и кинематической парой «коромысло-ползун» П; φ_{3R} – угол между осью *x* и отрезком ПД.

Если $L_{\Im B}$ находится на левой стороне оси y, то $L_{\Im B}$ принимает отрицательное значение. При этом надо учитывать, что в таком положении угол φ_{3} поворота коромысла (рис.2) имеет значение близкое к π . Тогда числовое значение радиуса кривизны $R_{\Im B}$, определяемое по формуле (2), имеет неверное решение.

Рис. 2. Положение угла поворота коромысла от L_{пд}

Поэтому для определения радиуса $R_{_{36}}$ эвольвенты в таком положении коромысла, используем уравнение:

$$R_{\mathcal{B}} = L_{\mathcal{B}}(\pi - \varphi_3). \tag{3}$$

Необходимо отметить, что такие положения коромысла встречаются в шарнирночетырехзвенных механизмах с наибольшим коромыслом.

Для определения скорости точки П относительно точки Д, запишем уравнение:

$$V_{\Pi} = \omega_{3} L_{\Pi \Lambda}$$

где *О*₃ – угловая скорость коромысла.

Скорость перемещения ползуна V_{ny} определяется проецированием V_n на саму направляющую оси ползуна, т. е.

$$V_{\Pi Y} = V_{\Pi} \cos \varphi_{3R}. \tag{4}$$

Скорость V_{nx} точки П относительно коромысла определяется из проекции V_n на ось x, т. е.

$$V_{\Pi X} = V_{\Pi} \sin \varphi_{3R}.$$
 (5)

Необходимо отметить, что направление линейной скорости V_{II} точки контакта коромысла и ползуна относительно точки Д определяется согласно принципу часовой стрелки.

При определении ускорения выходного звена расчет ведем только для ползуна, ускорения остальных звеньев определяются по методике, приведенной в работах [1, 2]. Так как, ползун соединен с коромыслом высшей кинематической парой, для построения расчетной схемы рассмотрим коромысло вместе с ползуном. Линейное ускорение a_c точки С и угловое ускорение \mathcal{E}_3 коромысла при этом должны быть известны.

Для определения ускорения точки П относительно опоры Д и направляющей оси ползуна, используем расчетную схему, приведенную на рис. 3.

Рис. 3 Расчетная схема для определения ускорения

Нормальная и тангенциальная составляющие ускорения точки П относительно опоры Д определяются из уравнений:

$$a_{\Pi}^{n} = rac{V_{\Pi}^{2}}{L_{\Pi \Lambda}}$$
 и $a_{\Pi}^{\tau} = \mathcal{E}_{3}L_{\Pi \Lambda}$,

где \mathcal{E}_{3} – угловое ускорение коромысла.

Полное ускорение a_{π} точки П относительно точки Д определяется по следующей формуле:

$$a_{\Pi} = \sqrt{(a_{\Pi}^{n})^{2} + (a_{\Pi}^{\tau})^{2}}$$

Для определения ускорения $a_{_{\Pi Y}}$ ползуна по оси его направляющей, проецируем $a_{_{\Pi}}$ на ось у (рис.4):

Рис. 4. Расчетная схема определения полного ускорения.

$$a_{\Pi Y} = a_{\Pi} \cos \left[arctg \left(\frac{a_{\Pi}^{n}}{a_{\Pi}^{\tau}} \right) + \varphi_{3K} \right].$$
(6)

Умножая уравнение (6) на функцию $sgn(a_{\Pi}^{\tau})$, обеспечиваем необходимую точность определения направления ускорения $a_{\Pi y}$ относительно стойки Д.

$$a_{\Pi V} = a_{\Pi} \cos \left[arctg \left(\frac{a_{\Pi}^{n}}{a_{\Pi}^{\tau}} \right) + \varphi_{3K} \right] \operatorname{sgn}(a_{\Pi}^{\tau}).$$
(7)

Для зеркального отражения рассматриваемого коромысла (рис.6) сумма углов $\varphi_{3\kappa}$ и $arctg\left(\frac{a_{\Pi}^{n}}{a_{\Pi}^{\tau}}\right)$ не может определить истинное значение угла между вектором

 a_n и направляющей оси ползуна. Поэтому, один из углов умножим на функцию $sgn(L_{36})$, тогда уравнение (7) для расчетной схемы, приведенной на рисунке 5, примет вид:

$$a_{\Pi Y} = a_{\Pi} \cos \left[\operatorname{arctg} \left(\frac{a_{\Pi}^{n}}{a_{\Pi}^{\tau}} \right) + \varphi_{3K} \operatorname{sgn}(L_{3K}) \right] \operatorname{sgn}(a_{\Pi}^{\tau}). \quad (8)$$

Рис. 5. Расчетная схема обеспечения точности определения ускорения.

Необходимо отметить, что в уравнениях (7) и (8) направление вектора a_{nv}

определяется из углов $\cos\left[arctg\left(\frac{a_{\Pi}^{n}}{a_{\Pi}^{\tau}}\right) + \varphi_{3K}\operatorname{sgn}(L_{36})\right]$ и $\operatorname{sgn}(a_{\Pi}^{\tau})$.

Следовательно, полученные уравнения (7) и (8) справедливы для соответствующих положений (рис. 4, 5) механизма. Отрицательное значение касательного ускорения a_n^{τ} соответствует угловому ускорению \mathcal{E}_3 коромысла, направленного по часовой стрелке, относительно точки Д.

На основе полученных аналитических уравнений составлена программа для вычисления скоростей и ускорений пятизвенного механизма на ЭВМ. Результаты

вычислений, произведенных графическим методом, совпали с результатами, полученными аналитическим методом на ЭВМ, которые представлены в виде графиков зависимостей на рис. 6 - 10.

Из графиков зависимостей $U_{_{31}}$ и $U_{_{21}}$ от обобщенной координаты $\varphi_{_1}$ (рис.6) видно, что передаточные отношения $U_{_{31}}$ и $U_{_{21}}$ достигают максимальных значений в момент удара.

Из графиков скоростей V_{CB} , V_C , $V_{\Pi V}$ и ускорений a_{CB} , a_C , $a_{\Pi V}$ также видно, что их числовые значения в особом положении достигают максимальных значений (рис. 7 и 8). Также следует отметить, что по сравнению со скоростями V_{CB} , V_C и ускорениями a_{CB} , a_C скорость $V_{\Pi V}$ и ускорение $a_{\Pi V}$ ползуна имеют большие значения.

Нетрудно заметить, что на рисунках значения скорости $V_{\Pi V}$ и ускорения $a_{\Pi V}$ ближе к удару имеют намного большие значения по сравнению со скоростями V_{S2} , V_{S3} и ускорений a_{S2} , a_{S3} центров тяжестей звеньев. Здесь следует отметить, что ползун перемещается по направляющей, следовательно, скорость и ускорение центра тяжести ползуна имеют те же значения, что и $V_{\Pi V}$ и $a_{\Pi V}$.

Рис. 7. Зависимость скоростей V_{cB} , V_c и V_{ny} от угла ϕ_1 .

Литература

1. Абдраимов С., Зиялиев К.Ж., Аканов Д.К. Кинематический анализ особых положений шарнирно-четырехзвенных ударных механизмов/Мат. межд. конф. «Механизмы переменной структуры и виброударные машины». - Бишкек, 1999. - С. 68-73.

2. Абдраимов С., Зиялиев К.Ж., Абдраимова Н.С., Чинбаев О.К., Такырбашев А.Б. Кинематический анализ шарнирно-четырехзвенного ударного механизма / Мат. межд. научн.-практ. конф. «Повышение эффективных показателей транспортных, строительнодорожных машин и коммуникаций в условиях высокогорья и жаркого климата». - Бишкек, 2003. - С. 389-394.

3. Зиновьев В.А. Курс теории механизмов и машин. - М., 1972. -384 с.