ПОЛУЧЕНИЕ АМОРФНЫХ ПЛЕНОК КРЕМНИЯ МАГНЕТРОННЫМ НАПЫЛЕНИЕМ

А.Ж.КАЛЕНДЕРОВ

E.mail. ksucta@elcat.kg

Аморфтуу кремнийдин чаңдатуу \Box зг \Box ч \Box лүкт \Box рү жана анын рентгендик түзүлүшү изилденди.

Исследованы и получены параметры напыления аморфного кремния, а также проведен его рентгеноструктурный анализ.

Surface of the amorphous silicon have been researched and X-rated analysis has been got.

Большой интерес, проявляемый в последние годы к аморфным полупроводникам, инициирован экономическими соображениями. Опыт использования полупроводникового кремния в аппаратах для фотопреобразования солнечной энергии в электрическую показал целесообразность его применения в большой энергетике. Этим требованиям лучше всего удовлетворяют аморфные сплавы на основе прежде всего кремния, а также других полупроводниковых материалов /1/.

В данной статье представлено исследование поверхности пленок, полученных магнетронным напылением. Магнетронная установка имеет следующие характеристики: напряжение источника питания постоянного тока 1000-1500 В; напряжение разряда 300-700 В; диапазон давления рабочего газа от 10⁻² до 1 Па и выше.

Сушествуют разнообразные физические способы получения аморфных материалов. Использование магнетронно-распылительной системы имеет свои преимущества:

- высокая скорость распыления при низких рабочих напряжениях (600-800 В) и при небольших давлениях рабочего газа (0,5-10 Па);
- отсутствие перегрева подложки;
- малая степень загрязнения пленок;
- возможность получения равномерных по толщине пленок на большой площади подложек /2/.

Для изучения структуры полученной пленки применен рентгеноструктурный фазовый анализ, где поверхность исследуется без каких-либо изменений формы и свойств.

Цель исследования – определить параметры и условия, в которых можно получать пленки требуемой толщины для применений в оптике, фотопреоброзовании и в электронике.

В качестве подложек служили пластины сеталла. На подложку в вакууме осаждался слой кремния. Напыление производилось однослойное без подслоя. В табл. 1 представлены параметры осаждения кремния.

Таблица 1

N⁰	Время напыления, мин	Расстояние материал-	Вакуум, мм	Толщина
		мишень, см	рт.ст.	пленок, мкм
1	45	12	10^{-4}	2.32
2	30	12	10^{-4}	2.34
3	40	12	10 ⁻⁴	2.36
4	30	12	10 ⁻⁴	2.30

Параметры напыления Si

Результат рентгеноструктурного анализа представлен на рис.1. По оси x отложены углы 2θ , а по оси y, – значения интенсивности отражения. По наиболее выраженным пикам углов, используя формулу Вульфа-Брегга, находим межплоскостные расстояния:

 $d = n\lambda/2sin\theta$,

где d – межплоскостное расстояние, \hat{A} ; λ – излучение трубки (использовался медный анод: $\lambda_{Cu} = 1,54178 \ \hat{A}$); θ – угол падения-отражения луча; $n = 1, 2, 3 \dots$ – порядок отражения.

Результаты приведены в табл. 2. Полученные по формуле экспериментальные результаты d_{2} совпадают с данными из справочника d_{c} . По справочнику также находим направление плоскости *hkl* и интенсивность *I*./3/

Таблица 2

Материал	θ	$d_{\mathfrak{I}}$	d_c	hkl	Ι	
C:	68,5	1,36973	1,354	400	0,18	Si
51	76,84	1,24053	1,242	331	0,25	Si
	68,54	1,36903	1,354	400	0,18	Si
	76,96	1,23889	1,242	331	0,25	Si

Расчетные данные для поверхности Si

Рис. 1. Рентгенограмма аморфного кремния, напыленного на поверхность сеталла

Полученный образец был разрезан и снят на оптическом микроскопе при увеличении 2000 крат. Измерение толщины образца получили, сравнивая с объект микрометром отраженного света, в котором 100 делений, каждое деление 10 микрон (рис. 2).

Рис. 2. Объект микрометр отраженного света

На рис. 3 представлен снимок сеталла толщиной ~ 2,5 мкм. Сеталл был разрезан в тонкий слой и приложен ребром к объекту микрометру отраженного света.

Рис. 3. Снимок толщины кремния на оптическом микроскопе

Также образец сеталла был снят на растровом оптическом микроскопе, где поверхность имеет ту же толщину, что и при оптическом ~ 2.3367 *мкм* (рис.4).

Рис. 4. Толщина пленки, в растровом микроскопе

На рис. 5 представлена поверхность аморфного кремния, снятого на оптическом микроскопе.

Рис. 5. Поверхность полученного кремния

В ходе исследований получены параметры и установлены режимы напыления. Также установлено, что толщина пленок зависит от качества напыляемого материала, его чистоты, условий вакуума и от величины тока.

Полученный слой аморфного кремния пригоден для использования его в оптике и в других электронных применениях.

Список литературы

1. Фалькевич Э.С., Пульнер Э.О., Черновый И.Ф. и др. – М.: Металлургия, 1992. – С.6-51.

2. Береснев В.М. Комаров Ф.Ф. и др. Наноматериалы, покрытия, технологии. – Усть-Каменогорск: ВКРУ, 2009. – С. 60-80.

3. Горелик С.С., Расторгуев Л.Н., Скаков Ю.А. Рентгенографический и электроннооптический анализ. – М.: Металлургия, 1970. – С. 4-18.