ДИАГРАММЫ КОНСТРУКЦИОННОЙ ПРОЧНОСТИ ПРИ СОВМЕЩЕННОМ ОСЕВОМ И ВНЕЦЕНТРЕННОМ РАСТЯЖЕНИИ

САПРЫКИН Ю.В. izvestiya@ktu.aknet.kg

Получены диаграммы конструкционной прочности упругопластических материалов с разной чувствительностью к трещинам.

Уточнение предельных значений известного в механике параметра вязкости разрушения – K_c при относительно небольших трещинах и сосредоточенной нагрузке [1] позволяет скорректировать зависимость $K_c = f(l/B)$ (где l – длина трещины, B – ширина образца) и

Рис.1 Известные модели распределения напряжений в нетто-сечении компактного образца при В.Р.: а – модель пластического шарнира; б – модель упругого распределения напряжений $\tilde{C}(l/B)$ (где l – длина трещины, B – ширина образца) и перейти к установлению предела конструкционной прочности (трещиностойкости) – R_{VR} при совмещенном осевом и внецентренном растяжении (В.Р.).

Определяющие этот предел силовые параметры K_c и $\sigma_{_{CH}}$ – номинальное разрушающее напряжение в устье трещины, зависят от жесткости напряженного состояния и уровня прочности материала.

Жесткость напряженного состояния, контролируемая стесненностью пластической деформации в устье трещины, существенно влияет на чувствительность материала к трещине и определяет его поведение с ней: пластическое. упругопластическое (или квазипластическое), квазиупругое и упругое [2]. От этого в свою очередь зависит характер распределения напряжений в сечении с трещиной. Например, для пластического поведения материала при В.Р. может быть применима (но только при относительно небольших трещинах) модель распределения напряжений, известная в сопротивлении материалов как «пластический шарнир» (рис. 1а), в соответствив с которой можно записать следующие условия равновесия предельных сил и моментов:

$$P = \sigma_B t (B_* - l - x); \qquad Pe = \sigma_B t (B_0 - l - x)x$$

Здесь e - эксцентриситет, равный $0.5(B_0 + l)$.

Исключив расстояние до нейтральной оси x, получим уравнение для расчета разрушающей нагрузки P_c (рис. 1a):

$$P_c = \sigma_B t B_* [2\sqrt{0.5 + (l/B_*)^2 - (l/B_*) - 1}];$$
или (при $l/B_* = 0$):
 $P_c^{\max} = \sigma_B 0.414B_* t$.

Из анализа моделей распределения напряжений (рис. 1, 2) следует, что при сосредоточенной растягивающей нагрузке и эксцентриситете в процессе В.Р. компактного образца его поперечное сечение оказывается под воздействием напряжений разного уровня. Это позволяет выделить в общем сечении образца сильно и слабо напряженные части сечения. Обычно сильно напряженная часть (С.Н.Ч.) сечения отождествляется с «опасным» сечением (О.С.). Однако такое совпадение возможно только при пластическом поведении материала (рис.1а). В более жестких

Рис.2 Модель распределения напряжений в сечении с трещиной (l_{HT}) образца ВР при квазиупругом поведении материала (предложена автором)

 $\beta = [2\sqrt{0.5 + (l/B)^2} - l/B - 1].$

условиях, например при квазиупругом поведении (рис.2), характерный размер B_0 О.С.-сечения может быть меньше размера B_c С.Н.Ч.-сечения. Такое разделение имеет принципиальное значение, поскольку в пределах О.С.-сечения процессы пластической деформации и разрушения начинаются и завершаются в первую очередь.

Согласно модели (рис.1а), разрушающее напряжение $\sigma_c = \sigma_B$ достигается не во всем сечении образца, а только в пределах С.Н.Ч.-сечения протяженностью $B_c = 1/2(B_* - l)$. Так что при l = 0, $B_c = 0.5B_*$. Согласно (1), $B_c = 0.414B_*$

Представим (1) в общем виде: $P_c^{\max} = \sigma_{CH} \lambda(\beta B_* t)$ (2) $P_{c}^{max} = \sigma_{ch} \lambda (\beta B_{*}t)$ (2) где: $\sigma_{ch} \leq \sigma_{B}$ – номинальное разрушающее напряжение у вершины трещины, которое может оказаться $\sigma_{\scriptscriptstyle R}$ повышенной ниже при чувствительности материала к трещине; λ – параметр, интегрально учитывающий изменение $\sigma_{_{CH}}$ и размера - B_0 О.С-сечения с изменением чувствительности материала к трещине;

При $l \cong 0$ величина произведения $\lambda \beta_{\max} B_* = 0.414 B_*$ определяет (при $\lambda = 1$) максимальный характерный размер (B_0^{\max}) О.С.-сечения, который при модели пластического шарнира близок к размеру B_c^{\max} С.Н.Ч.-сечения (рис.1а).

При $l_i \neq 0$, установив экспериментально, или из (2), при соответствующих λ и β_i величину разрушающей нагрузки P_{ci} , можно определить предельное значение параметра трещиностойкости [3]: $K_{ci} = P_{ci}Y_i / t\sqrt{B_*}$; или подставив вместо P_c из (2), получим:

$$K_{ci} = \sigma_B \sqrt{B_*} \lambda \beta_i Y_i. \tag{3}$$

Здесь Y_i — аналитическая функция, корректирующая параметр K_c в зависимости от относительной длины трещины l_i / B_* (при $l / B_* \leq 0.33$ функция Y_* уточнена в работе [1]).

При квазиупругом поведении материала с трещиной предлагается [3] модель упругого распределения напряжений (рис.1б), в соответствии с которой величина номинального разрушающего напряжения σ_{ch} у вершины трещины в образце, испытывающем при В.Р. действия напряжений растяжений и изгиба, определяется из уравнения:

$$\sigma_{_{CH}} = [P_c(B - l_T)t]^* [1 + (3(B + l_{_{HT}})/(B - l_{_{HT}}))].$$
(4)

Здесь l_{HT} - длина надреза (l_H) совместно с длиной усталостной трещины (l_T), предварительно полученной в вершине краевого надреза в образце В.Р. Приняв $\sigma_{cH} = \sigma_B$, преобразуем (4) к виду(при $\lambda = 0.5$):

$$P_{ci} = \lambda \sigma_B t [(B - l_{HT})^2 / (2B + l_{HT})]$$
⁽⁵⁾

Решая (5) при условии, что в крайней точке приложения нагрузки (точка «О» на рис.1б) и трещина и надрез отсутствуют ($l_{iT} = 0$) или пренебрежимо малы ($l_{iT} = l_0 \le 0.001B_*$), получим:

$$P_c^{\max} \cong 0.25\sigma_B B_* t \qquad \text{w: } \sigma_{ci}^{\max} = P_c^{\max} / B_* t = 0.25\sigma_B. \tag{6}$$

Поскольку вероятность разрушения упругопластического тела (без надреза, трещины и охрупчивания) при $\sigma_{\tilde{n}i}^{\max} = 0.25\sigma_B$ практически исключена, то по аналогии с (1), (2) и учетом модели (рис.2) предлагается следующая интерпретация равенства (6):

$$P_c^{\max} = \sigma_B 0.5(0.5B_*t) = \sigma_B \lambda(\beta_{\max}B_*t).$$
⁽⁷⁾

Здесь произведение ($\beta_{\max} B_*$) определяет максимальный характерный размер (B_c^{\max}) С.Н.Ч.сечения (рис.2). Так как в данном случае $\lambda = 0.5$, то, согласно проведенному выше анализу, величина произведения $\lambda \beta_{\max} B_* = 0.25 B_*$ должна соответствовать при $l \cong 0$ максимальному размеру B_0^{\max} О.С.-сечения, в котором в первую очередь достигается развитое пластическое течение, а к моменту исчерпания пластичности разрушение материала с низкой чувствительностью к трещине происходит при $\sigma_c^{\max} = \sigma_B$.

Размер (B_0) О.С.-сечения, выделенного из анализа модели распределения напряжений в квазиупругом материале с трещиной (рис.2), должен зависеть не только от длины трещины (как и размер (B_c) С.Н.Ч.-сечения), но и от толщины образца и температуры испытания – основных факторов, влияющих на чувствительность материала к трещине, учитываемую коэффициентом λ .

Так как при $\lambda = const$ разрушающая нагрузка P_c и характерный размер (B_0) О.С.сечения в одном и том же образце уменьшается с увеличением длины трещины, а разрушение материала в О.С.-сечении происходит при истинном напряжении $\sigma_{cs} = \sigma_B$, то из этого следует, что разрушающая нагрузка P_c может изменяться пропорционально B_0 , т.е.: $\sigma_{cs} = P_{ci} / B_{0i}t = const$. (8)

При этом величину отношения $P_{ci} / B_0^{\max} t$, по-видимому, можно принять за условное разрушающее напряжение σ_{c^*i} : $\sigma_{c^*i} = P_{ci} / B_0^{\max} t$. (9)

Здесь величина произведения $B_0^{\max}t = const$ соответствует максимальной площади О.С.сечения при длинах трещин $0 \le l_i < 0.001B_*$; P_{ci} – разрушающая нагрузка при длинах трещин $l_i > 0.001B_*$. Такой подход позволяет получить предельную кривую конструкционной прочности (предел конструкционной прочности R_{VR}) для условий В.Р., при которых материал с трещиной находится под воздействием напряжений растяжения и изгиба.

Рис.З Предел конструкционной прочности R_{VR} для образцов B=80мм; t=40мм из стали 20 (а) и зависимость коэффициента интенсивности напряжений K от истинного напряжения σ_{cs} (б) в опасном сечении образца при исходной длине трещины l/B = 0.4: в точке m - старт трещины на микроуровне; в точке q - старт трещины на макроуровне ($\sigma_{B} = 423$ МПа)

С этой целью на основе экспериментальных значений P_{ci} при разных l_i в компактных образцах, испытанных до разрушения в условиях В.Р., устанавливаются зависимости силовых параметров конструкционной прочности K_{ci} и σ_{c*i} от соответствующих относительных длин трещин l_i/B (расчет значений K_{ci} при $l_i/B < 0.33$ производится по скорректированным коэффициентам жесткости Y_* [1]). Затем с учетом зависимостей $K_{ci} = f(l_i/B)$ и $\sigma_{c*i} = f(l_i/B)$ определяется третья – зависимость K_{ci} от разных значений условного разрушающего напряжения σ_{c*i} , соотнесенных с пределом прочности образца без трещины (σ_B) . Эта зависимость и будет соответствовать R_{VR} пределу конструкционной прочности при разных

Рис.4 Спектр пороговых кривых (диаграмм) конструкционной прочности (трещиностойкости) при совмещенном осевом и внецентренном растяжении сталей с трещинами разных длин: І – упругое поведение стали с трещинами; ІІ – квазиупругое; ІІІ – упругопластическое; IV и V – пластическое; VI – предел R_{VR} , установлен по модели пластического шарнира

относительных уровнях разрушающего напряжения и длинах трещин (рис.3).

Важно отметить, что, в соответствии с (3), при $l/B \cong 0.5$ ($\beta = 0.1$; Y = 9.66): $\lambda \approx K_c^{(0.5)} / \sigma_B \sqrt{B}$, здесь $K_c^{(0.5)}$ – значение K_c , соответствующее l/B = 0.5.

На рис.3 представлена зависимость приведенного предела конструкционной прочности $R_{VR}/\sigma_B\sqrt{B}$ от относительного уровня разрушающего напряжения σ_{c^*i}/σ_B ($\lambda \approx 0.48$, образцы ст.20 t = 40 мм, B = 80 мм). Как функция чувствительности материала к трещине,

безразмерный параметр λ определялся из уравнения (5) с учетом разрушающих нагрузок P_{ci} , при относительных длинах трещин $0.31 \le l/B \le 0.7$.

Исследования предельных K_c низкопрочных сталей в условиях В.Р. при -196⁰С [2] позволили установить пороговое значение $\lambda_{\kappa.y.}^{\min} \approx 0.23$, как нижнюю границу интервала изменения $\lambda_{\kappa.y.}$ при квазиупругом поведении сталей с трещинами.

При проведении подобных экспериментов с этими же сталями, но при +20°С, были получены значения λ , близкие или равные 0.48, а согласно стандарту [3] и формулы (7) - $\lambda_{\hat{e}.\hat{o}.}^{\max} = 0.5$. С учетом этого, значение $\lambda_{\hat{e}.\hat{o}.} = 0.48$, отвечающее одной из самых низкопрочных сталей (рис.3), по-видимому, можно принять за верхнюю границу интервала изменения $\lambda_{\kappa.y.}$. При этом обращает внимание тот факт, что $\lambda_{\kappa.y.}^{\max} = (\lambda_{\kappa.y.}^{\min})^{1/2}$. Если принять, что следующий энергетический уровень приведенного $R_{VR} / \sigma_B \sqrt{B}$, отвечающий верхней границе интервала упругопластического поведения материала, может быть установлен аналогично предыдущему, как $\lambda_{y.n.}^{\max} = (\lambda_{\kappa.y.}^{\max})^{1/2}$, то получим третий энергетический купол (кривая III, рис.4), отвечающий $\lambda_{y.n.}^{\max} \cong 0.69$ и верхней границе интервала упругопластического поведения диниервала упругопластического поведения с трещиной.

На рис.4 представлены также IV и V энергетические купола, в пределах которых могут располагаться экспериментальные значения параметра $R_{VR} / \sigma_B \sqrt{B}$, полученные на образцах малой толщины, разрушающихся при пластическом поведении материала. Расчет полного спектра куполообразных кривых (рис.4) был произведен с учетом, что $\lambda_{(1+5)} = (\lambda_{\kappa.y.}^{\min})^{1/n}$, где: $\lambda_{\kappa.y.}^{\min} = 0.23$; n = 2;4;8;16.

Видно, что кривые IV ($\lambda_n = 0.83$) и V ($\lambda_n = 0.91$) удовлетворительно совпадают (при $l/B \le 0.25$) с предельной кривой VI, полученной расчетом по формуле (1) для модели пластического шарнира.

Литература

- 1. Сапрыкин Ю.В., Кулаков В.С. О корректности определения предела трещиностойкости при совмещенном осевом и внецентренном растяжении компактных образцов. // Изв. КГТУ им. И. Раззакова, № 21. 2010.
- Сапрыкин Ю.В. Рентгеноструктурный анализ критических параметров разрушения в точке бифуркации. ФХММ. –1990. №3.
- ГОСТ 25.506-85. Определение характеристик трещиностойкости при статическом нагружении. –М.: Изд. Стандартов. –1985.