Зиялиев К.Ж., Такырбашев А.Б., Соромбаев С.Б.

ЫГУ им. К.Тыныстанова

УГЛОВОЕ ПЕРЕМЕЩЕНИЕ ДОПОЛНИТЕЛЬНОГО ШАТУНА ОТНОСИТЕЛЬНО НАПРАВЛЯЮЩЕЙ ПОЛЗУНА И КИНЕМАТИЧЕСКИЕ ХАРАКТЕРИСТИКИ ДОПОЛНИТЕЛЬНЫХ ЗВЕНЬЕВ ШЕСТИЗВЕННОГО МЕХАНИЗМА

На рис. 1 приведена расчетная схема ударного узла шестизвенного механизма для определения углового перемещения дополнительного шатуна относительно направляющей. Начало системы координат Дху совмещено с осью вращения коромысла 1, а ось Дх абсцисс проведена перпендикулярно к направляющей ползуна.

Рис. 1

Для упрощения расчетно-графической схемы на ней кривошип и шатун не указываем.

Проецируя все звенья и h на ось x, имеем

$$L_{\rm KM}\sin(180^{\circ} - \varphi_{\rm 3} + \rho) - h - L_{\rm KN}\sin\eta = 0, \qquad (1)$$

Учитывая, что
$$\sin(180^\circ - \varphi_3 + \rho) = \sin(\varphi_3 + \rho)$$
, из (1) определим

$$\eta = \arcsin\left(\frac{L_{_{K\!N}}\sin(\varphi_{_3}+\rho)-h}{L_{_{K\!N}}}\right). \tag{1}$$

Таким образом, угол η для всех положений механизма можно определить по уравнению (1). Однако необходимо отметить, что расстояние h меняет свой знак с переходом дополнительного шатуна на правую сторону от оси у.

На основе плана положений механизма для скоростей точек К и N строим план скоростей в произвольном масштабе. Это построение является расчетной схемой для вывода требуемой зависимости в аналитической форме. Для пояснения этой методики рассмотрим план положения ударного механизма, представленный на рис. 2. Скорости звеньев кривошипно-коромыслового МПС определены в работе [1]. Поэтому на расчетной схеме показана только та часть механизма, для которой еще не определены скорости. Особое положение механизма на рис. 2 а) показано штрихпунктирной линией.

Расположив план скоростей в декартовой системе координат Рху так, чтобы его полюс совпал с началом координат, а направление вектора V_N - с положительным направлением оси у и проецируя векторное уравнение $V_K + V_{KN} = V_N$ на координатные оси Рх и Ру, получим:

$$\begin{cases} V_{K} \cos(\varphi_{3} - \rho - 90^{\circ}) + V_{KN} \cos(90^{\circ} + \eta) = V_{N} \\ V_{K} \sin(\varphi_{3} - \rho - 90^{\circ}) + V_{KN} \sin(90^{\circ} + \eta) = 0, \end{cases}$$
(3)

где $V_{_K}$ – скорость коромысла в точке К; $V_{_{KN}}$ – скорость дополнительного шатуна в точке N относительно точки К; $V_{_N}$ – скорость ползуна.

Рис. 2. План скоростей дополнительных звеньев кривошипно-коромыслового механизма.

Из второго уравнения системы уравнений (3) определяется скорость точки N относительно точки К:

$$V_{KN} = -\frac{V_{K}\sin(\varphi_{3} - \rho - 90^{\circ})}{\sin(90^{\circ} + \eta)} \qquad (4)$$

$$(\varphi_{KN} - \rho - 90^{\circ}) = -\cos(\varphi_{N} - \rho) + \sin(90^{\circ} + \eta) = \cos\eta$$

Учитывая, что $\sin(\varphi_3 - \rho - 90^\circ) = -\cos(\varphi_3 - \rho)$ и $\sin(90^\circ + \eta) = \cos\eta$,

получим:

$$V_{KN} = \frac{V_K \cos(\varphi_3 - \rho)}{\cos\eta}.$$
 (5)

Подставляя (5) в первое уравнение системы уравнений (3), получим формулу для определения скорости ползуна:

$$V_{N} = \frac{V_{K} \sin(180^{\circ} + \eta - \varphi_{3} + \rho)}{\sin(90^{\circ} + \eta)}.$$
 (6)

Отсюда, учитывая, что

$$\sin(180^{\circ} + \eta - \varphi_{3} + \rho) = -\sin(\eta - \varphi_{3} + \rho)$$
и
$$\sin(90^{\circ} + \eta) = \cos\eta,$$

из (б) получим:

$$V_{N} = -\frac{V_{K}\sin(\eta - \varphi_{3} + \rho)}{\cos\eta}.$$
(7)

Передаточное отношение $U_{\scriptscriptstyle 41}$ угловых скоростей определяется по формуле:

$$U_{41} = \frac{\omega_4}{\omega_1} = \frac{\frac{V_{KN}}{L_{KN}}}{\frac{V_B}{L_1}} = \frac{V_{KN}}{\lambda_5 V_B},$$
(8)

где $\lambda_5 = \frac{L_{_{KN}}}{L_1}$; $V_{_B}$ - линейная скорость кривошипа; ω_1 , ω_4 - угловые скорости,

соответственно, кривошипа и дополнительного шатуна 4; L₁.- длина кривошипа.

Подставляя (5) в (8), получим:

$$U_{41} = \frac{V_{\kappa} \cos(\varphi_3 - \rho)}{\lambda_5 V_B \cos\eta}.$$
(9)

На основе полученных аналитических уравнений (5), (7) и (9) составлена программа для вычисления на ЭВМ скоростей звеньев механизма.

Результаты вычислений на ЭВМ показывают, что скорости звеньев в шарнирах N и K достигают максимальных значений в моментах, близких к особому положению механизма. Это наглядно показано на графиках зависимостей скоростей V_N и V_K от угловой координаты φ_1 при $\rho = 90^\circ$, 57° , 123° и h=0.01мм (рис.3).

Кривая скорости V_N , обозначенная цифрой 1, соответствует при $\rho = 90^\circ$, кривая 2 при $\rho = 57^\circ$ и кривая 3 при $\rho = 123^\circ$. Кривая скорости V_K проведена сплошной тонкой линией, которая обозначена цифрой 4. С уменьшением угла ρ до определенного значения, скорость ползуна V_N возрастает. Линии, лежащие внизу от оси абсцисс, означают, что скорость V_N направлена против направления удара, т.е. в направлении совершения удара скорость V_N получает положительное значение. Точка пересечения кривых на оси φ_1 соответствует верхнему крайнему положению ползуна.

Рис. 3. Зависимости скоростей V_{N} и V_{K} от угла поворота φ_{1} , при изменении угла ρ : кривая 1 при $\rho = 90^{\circ}$; кривая 2 при $\rho = 57^{\circ}$; кривая 3 при $\rho = 123^{\circ}$; кривая 4 – скорость точки К относительно опоры Д при всех значениях угла ρ .

Литература:

1.Зиялиев К.Ж. Кинематический и динамический анализ шарнирно-четырехзвенных механизмов переменной структуры с созданием машин высокой мощности. – Бишкек, Илим, 2005. - 195 с.

2. Такырбашев А.Б. Кинематический и динамический анализ механизма переменной структуры с дополнительными звеньями: Дисс. канд. техн. наук. - Бишкек, 2007.