# КИНЕМАТИКАЛЫК МЕЙКИНДИКТЕРДИН ӨЛЧӨМДӨРҮ ЖАНА КОМПЬЮТЕРДЕ КӨРСӨТҮҮСУ <br> КОМПЬЮТЕРНОЕ ПРЕДСТАВЛЕНИЕ И РАЗМЕРНОСТИ КИНЕМАТИЧЕСКИХ ПРОСТРАНСТВ COMPUTER PRESENTATION AND DIMENSIONS OF KINEMATICAL SPACES 

P.S. Pankov, Institute of Mathematics<br>720071 Bishkek, Kyrgyzstan E-mail: pps5050@mail.ru<br>A.H. Zhoraev docent of Department of Mechanics and Mathematics<br>Kyrgyz-Uzbek University<br>79 Isanov Str. 714017 Osh, Kyrgyzstan<br>E-mail: zhvl967@mail.ru


#### Abstract

Аннотация: Компьютер аркылуу жүзөгө ашырылуучу, эвклиддик эмес топологиялькк мейкиндиктерде башкарылуучу кыймылдоо бул макалада каралат. Макалада чекиттин жана узун-туурасы бар объекттин кыймылдоосун жабдуучу аныктамалар жана кинематикалык мейкиндиктерде кыймылдоонун негизинде өлчөмдҮY ${ }^{ч}$ аныктама бар.

Аннотация. В статье рассматривается управляемое движение в неэвклидовых топологических пространствах, которое может быть реализовано на компьютере. Статьясодержит определения, обеспечиваюшие движение точки и протяженных объектов, и три определения размерности, основанные на движении в кинематических пространствах.

Abstract: This paper deals with controlled motion in non-Euclidean topological spaces which can be implemented by means of computer. It contains a survey of definitions to provide motion of a point, definitions of motion of a lengthy object and three definitions of dimension based on motion in kinematical spaces.

Key words: topological space, metrical space, kinematical space, computer, Riemann surface, motion, rotation, dimension.

Урунттуу сөздөр: топологиялык мейкиндик, метрикальк мейкиндик, кинематикалык мейкиндик, компьютер, римандык бет, кыймылдоо, айлануу, өлчөм.

Ключевые слова: топологическое пространство, метрическое пространство, кинематическое пространство, компьютер, риманова поверхность, движение, вращение, размерность.


## 1. Introduction

Since it is known, S.Ulam [6] was the first to propose an active work on computer to present a virtual (four-dimensional Euclidean) space, but he did not propose any concrete methods of implementation.

An another way to perform non-Euclidean spaces visually by means of computer was proposed [7]. His idea can be demonstrated by the following example. If we put the figure $\supseteq$ onto a common ring band and we can look "along" the band sufficiently far then we will see the se- quince of diminishing figures $\supseteq \supseteq \supseteq \supseteq \supseteq \ldots$...
Ifwe do same for a Mobius band then we will see the sequence of diminishing figures

[^0]spaces (Riemann surfaces, Mobius band, projective plane, topological torus) with se- arch in them. Methods of constructing such spaces and marking to facilitate motion in them were proposed in [2] and applied in [5].

A similar definition, independently of us, was proposed in [3]. We do not know whether it was implemented by computer.

Kinematical investigation of unk nown spaces defined by differential and algebraic equa- tions was proposed in [8].

New types of dimensions based on motion were announced in [9] and [10].
In this paper we expound this approach and give definitions of three new types of dimen- sions: successful observation and "almost observation" from observable domains; possibility of rotation of lengthy sets.
2. Review of preceding definitions on motion and dimensions

We will use denotations $R:=(-\infty, \infty) ; R_{+}:=[0, \infty) ; Q^{k}:=[0 ; 1]^{k}, k=1,2,3, \ldots$ is a $k$-dimen- sional cube (segment, square, cube, ...); $\varepsilon$ is a small positive parameter. Also, we will extend func- tions to sets with same denotations.

Natural motion of points (also implemented on computer) is presented by the following sys- tem of axioms [2] based on the notion of time.

Definition 1. A computer program is said to be a presentation of a computer kinematical space if:
P 1 ) there is an(infinite) metrical space $X$ of points and a set $X_{l}$ of program-presentable points being sufficiently dense in $X$;

P2)the user can pass from any point $x_{1}$ in $X_{1}$ to any other point $x_{2}$ by a sequence of adjacent points in $X_{I}$ by their will;

P3) the minimal time to reach $x_{2}$ from $x_{1}$ is (approximately) equal of the minimal time to reach $x_{2}$ fromx ${ }^{1}$.

The space $X$ is said to be a kine matic space;the space $X_{I}$ is said to be a computer kinematic space;thisminimal time is said to be the kinematical distance $\rho_{X}$ between $x_{1}$ and $x_{2}$, asequence of adjacent points is said to be a route. Passing to a limit as $X_{I}$ tends to $X$ we obtain the following.

There is a set $K$ ofroutes; eachroute $M$, in turn, consists of the positive real number $T_{M}$ (time of route) and the function $m_{M}:\left[0, T_{M}\right] \rightarrow X$ (trajectory of route);
(K1) For $x_{I} \neq x_{2} \in X$ there exists such $M \in K$ that $m_{M}(0)=x_{I}$ and $m_{M}\left(T_{M}\right)=x_{2}$, and the set of values of such $T_{M}$ is bounded with a positive number below;
( $\mathrm{K} 2=\mathrm{P} 3$ ) If $M=\left\{T_{M}, m_{M}(t)\right\} \in K$ then the pair $\left\{T_{M}, m_{M}\left(T_{M}-t\right)\right\}$ is also a route of $K$ (the reverse motion with same speed is possible);
(K3) If $M=\left\{T_{M}, m_{M}(t)\right\} \in K$ and $T^{*} \in\left(0, T_{M}\right)$ then the pair: $T^{*}$ and function $m^{*}(t)=m_{M}(t)(0 \leq t \leq$ $T^{*}$ ) is also a route of $K$ (one can stop at any desired moment);
(K4) concatenation of routes for three distinct points $x_{1}, x_{2}, x_{3}$.
Remark 1.After our publication [2] another version of presenting "motion" based on the notion of "path" was proposed.

Denote the set of connected subsets of $R$ as $\operatorname{In}$. A path is a continuous map $\gamma: \operatorname{In} \rightarrow X$ (a topological space).

Definition 2. The following definition is composed of some definitions in [3] (briefly) redu- ced to a "a priori" bounded, path-connected space $X$; denotations are slightly unified.
A length structure in $X$ consists of a class $A$ of admissible paths together with a function (length) $L$ : $A$ $\rightarrow R_{+}$.

The class $A$ has to satisfy the following assumptions:
(A1) The class $A$ is closed under restrictions: if $\gamma \in A, \gamma:[a, b] \rightarrow X$ and $[u, v] \subset[a, b]$ then the restriction $\gamma$ $\left.\right|_{[u, v]} \in$ Aandthe function $L$ is continuous with respect to $u, v$;
(A2)The class $A$ is closed under concatenations of paths and the function $L$ is additive corresponddingly. Namely, if a path $\gamma:[a, b] \rightarrow X$ is such that its restrictions $\gamma_{1}, \gamma_{2}$ to $[a, c]$ and $[c, b]$ belong to $A$, then so is $\gamma$.
(A3)The class $A$ is closed under (at least) linear reparameterizations and the function $L$ is
invariantcorrespondingly: for a path $\gamma \in A, \gamma:[a, b] \rightarrow X$ and a homeomorphism $\varphi:[c, d] \rightarrow[a, b]$ of the form $\varphi(t)=\alpha t+\beta$, the composition $\gamma(\varphi(t)$ is also a path.
(A4) (similar to (Kl)).
The metric in $X$ is defined as
$\rho_{L}\left(z_{0}, z_{1}\right):=\inf \left\{L(\gamma) \mid \gamma:[a, b] \rightarrow X ; \gamma \in A ; \gamma(a)=z_{0} ; \gamma(b)=z_{l}\right\}$.
We mention some known definitions briefly (we restrict with metric sets):
Definition 3. Dim-dimension (or "cover"- or Lévesque one): it is defined to be the mini- mum value of $n$, such that every open cover (set of open sets) $C$ of $X$ has an open refinement with number of overlapping being $(n+1)$ or below.

Ind-dimension: by induction $\operatorname{Ind}(\varnothing)=-1 ; \operatorname{Ind}(X)$ is the smallest n such that, for every closed subset $F$ of every open subset $U$ of $X$, there is an openset $V$ in "between $F$ and $U$ " such that $\operatorname{Ind}($ Boundary $(U))<(n-1)$.
$\operatorname{Minkovski}(\operatorname{Min})$-dimension. $\operatorname{Min}(X):=\lim \left\{\left(-\log N_{d} \log \varepsilon\right) \mid \rightarrow 0\right\}$ where $N_{\varepsilon}$ is the mini- mal cardinality of $\varepsilon$-sets in $X$. Iflimdoes not exist thenliminf (Min_)and limsup( Min $_{+}$) to be con- sidered.

Remark 3. For metrical spaces Dim-dimension and $\operatorname{Ind}$-dimension coincide. Obviously, $\operatorname{Min}\left(Q^{k}\right)$ $=k$.
3.Motion of lengthy objects in kinematical spaces

Definition 1 is not sufficient for motion of point sets. One of possible extensions of Defi- nition 1 is the demand of isometric of all shifts of a set during motion but it is too binding. We proposed [11]

Definition 4. Given a set $S \subset K$.A set of routes with functions $\{M(p): p \subset S\}$ with a same time $T$ is said to be a motion of $S$ with bounded deformation if there are such constants $O<a_{-}<1<a_{+}$that $(\mathrm{M} 1)(\forall p \in S)(M(p)(0)=p)$;
(M2) $\left(\forall p_{1} \neq p_{2} \in S\right)(\forall t \in[0, T])\left(\rho_{K}\left(M\left(p_{1}\right)(t), M\left(p_{2}\right)(t)\right) \in\left[a_{\lrcorner}, a_{+}\right] \rho_{K}\left(p_{l}, p_{2}\right)\right)$.

## Definition 5.Ifadditionally

(R1) there exists such set ("axis") $C \in S$ that $\left.M\right|_{C}$ is the identity operator;
$\left.(R 2)(\forall p \in S)_{\{ } M(S)(0)=M(S)(T)\right)$ (initial and final sets coincide);
(R3) $\left(\forall t_{l} \neq t_{2} \in(0, T)\right)\left(M(S)\left(t_{1}\right) \cap M(S)\left(t_{2}\right)=C\right)$ (the set $S$ is "thin" and does not pass by itself excluding the axis);
then such motion is said to be a "proper rotation" (with "bounded deformation" correspondingly) around $C$.

Remark 4. To define "rotation" of a general (spacious) objects in a space without geo- metry is very complicated. For our purposes such "proper rotation" is sufficient.
4. Dimensions defined by motion in kinematical spaces

Definition 6. A set $B$ of a kinematical space $X$ is said to be "fully observable" if there exists a route including all this set.

Definition 7.A kinematical space $X$ is said to be "locally observable" if each its point has a "fully observable" neighborhood.

Definition 8. A locally observable kinematical space $X$ is said to be "observable" if each its bounded set is "fully observable".

As usually, we will call a bijective continuous image of a segment $[0, T]$ a "segment in kinematical space". Also, we will call the trace of bijective motion of a segment with one of end- points fixed "triangle" etc.

Definition 9. "Orientation dimension" $O$ ri- is 1 for observable spaces. If there exists such "segment" with endpoints $z_{1}$ and $z_{2}$ and an inner point $z_{0}$ and such rotation with bounded deformation around $z_{0}$ that $z_{l}$ passes to $z_{2}$ and vice versa then $O$ ri $(K)>2$; if there exists a "triangle" with vertices $z_{1}, z_{2}$ and $z_{3}$ and a point $z_{0}$ within the "segment" $z_{1}-z_{2}$ which can be rotated around the segment $z_{0}-z_{3}$ with bounded deformation such that $z_{1}$ passes to $z_{2}$ and vice versa then $O r i(K)>3$ etc.
Obviously, $\operatorname{Ori}\left(Q^{k}\right)=\operatorname{Dim}\left(Q^{k}\right), k=1,2,3, \ldots$.
Remark 5. "Motion" of such lengthy sets into themselves is not sufficient for such definition because a triangle $z_{1}-z_{2}-z_{3}$ can be transformed continuously into triangle $z_{2}-z_{1}-z_{3}$ by motion along the Mobius band but its dimension is 2 .

The next definition also begins with observable spaces.
Definition 10. (For bounded spaces only).Kinematical (Kin-) dimension is 1 for observable spaces. By induction: If $\operatorname{not}(\operatorname{Kin}(X) \leq n), n \geq 1$ and there exists function $M_{n}\left(a_{1}, a_{2}, \ldots, a_{n}, t\right): R_{+}{ }^{n} \times R_{+} \rightarrow X$ defined for $a_{1} \leq a_{2} \leq \ldots \leq a_{n}$, being a route for fixed $a_{1}, a_{2}, \ldots, a_{n}$, such that

1) $M_{n}\left(a_{1}, a_{2}, \ldots, a_{n}, 0\right)=x_{0}($ a fixed element in $K)$;
2) $M_{n}\left(a_{1}, a_{2}, \ldots, a_{n}, t\right)$ does not depend on $a_{i}$ being grater than $t$;
3) $\rho_{K}\left(M_{n}\left(a_{1}{ }^{\prime}, a_{2}{ }^{\prime}, \ldots, a_{n}^{\prime}, t\right), M_{n}\left(a_{1}{ }^{\prime \prime}, a_{2}{ }^{\prime \prime}, \ldots, a_{n}{ }^{\prime \prime}, t\right)\right) \leq\left|a_{1}^{\prime}-a_{1}{ }^{\prime}\right|+\left|a_{2}{ }^{\prime}-a_{2}{ }^{\prime \prime}\right|+\ldots+\left|a_{n}{ }^{\prime}-a_{n} "\right|$;
4) Trajectories of $M_{n}\left(a_{1}, a_{2}, \ldots, a_{n}, t\right)$ for all $a_{i}$ cover the set $X$ then $\operatorname{Kin}(X)=n+1$.
It is obvious that $\operatorname{Kin}\left(Q^{l}\right)=1$.
Remark 6.There exists a continuous Peano surjection $Q^{l} \rightarrow Q^{2}$ if $Q^{2}$ is considered as a topological space.

Theorem 1. $\operatorname{Kin}\left(Q^{2}\right)=2\left(=\operatorname{Dim}\left(Q^{2}\right)\right)$ if $Q^{2}$ is considered as a kinematical space with Euclidean metric.

Proof.By contradiction.If $\operatorname{Kin}\left(Q^{2}\right)=1$ then there exists a trajectory $S$ covering all $Q^{2}$. Choose a natural $n$ and divide $Q^{2}$ into $n \times n$ little squares. The trajectory $S$ passes though all centers of squares and has the length within each square not less than $1 / n$. Hence, its total length is not less than $n n \cdot 1 / n=n$ and tends to infinity as $n \rightarrow \infty$.

Definition 11.A bounded kinematical space $X$ is said to be "almost observable" if
$(\forall \varepsilon>0)(\exists M \in K)(\forall x \in X)\left(\exists t \in\left[0, T_{M}\right]\right)\left(\rho_{X}\left(x, m_{M}(t)\right)<\varepsilon\right)$.
Denote the lower bound of such $T_{M}$ for fixed $\varepsilon$ as $W_{d} X$ ).
Remark 7. The notion of a compact space can be expressed by "almost observability": if a kinematical space is almost observable and complete then it is compact.
As $N_{\varepsilon} \approx W_{\varepsilon}(X) / \varepsilon$ we obtain "Minkovski-kinematical" Min-kin-dimension:
Definition 12.Min-kin $(X):=1-\lim \left\{\log W_{\varepsilon}(X) / \log \varepsilon \mid \varepsilon \rightarrow 0\right\}$. If this limdoes not exist thenliminf (Min-kin_) and lim sup(Min-kin+)to be considered.

For example, $W_{\varepsilon}\left(Q^{l}\right)=1-2 \varepsilon$;
$\operatorname{Min}-\operatorname{kin}\left(Q^{l}\right)=1-\lim \{\log (l-2 \varepsilon) / \log \varepsilon \mid \varepsilon \rightarrow 0\}=1-0=1$;
$W_{\varepsilon}\left(Q^{2}\right) \approx(1-2 \varepsilon)(2 \varepsilon)+(1-2 \varepsilon) ; \operatorname{Min}-\operatorname{kin}\left(Q^{2}\right)=1+\lim \{\log (2 \varepsilon) / \log \varepsilon \mid \varepsilon \rightarrow 0\}=1+1=2$.
5. Conclusion

The paper demonstrates that various new definitions of "dimension" conforming with known ones can be introduced on the base of "motion" and "rotation" in kinematical spaces.

## References:

1. Борубаев А.А., Панков П.С. Компьютерные представления кинематических топологи-ческих пространств. - Бишкек: КГНУ, 1999.
2. Borubaev A.A., Pankov P.S., Chekeev A.A.Spaces Uniformed by Coverings.-Budapest:Hungarian-Kyrgyz Friendship Society, 2003.
3. Burago D., Burago Yu., Ivanov S.A Course in Metric Geometry //Graduate Studies in Mathematics, Volume 33, American Mathematical Society Providence, Rhode Island, 2001.
4. Pankov P.S., Bayachorova B.J. Using computers to perform non-Euclidean topological spaces //The 6 -th conference and exhibition on computer graphics and visualization "Graphicon-96", Saint-Petersburg, 1996, vol. 2, p. 232.
5. PankovP.S., JoraevA.H.Recognizability and local computer presentation of topological spaces //Problems of modern topology and applications: abstracts of the international conference. -Tashkent:Nizami Tashkent State Pedagogical University, 2013. - Pp. 70-72.
6. Ulam S.M.A Collection of Mathematical Problems.- New York: Interscience Publishers, 1960.
7. WeeksJ.R.The Shape of Space.- New York:Marcel Dekker, Inc., 1985.
8. ЖораевА.Х. Исследование топологических пространств кинематическим методом. Saarbrücken, Deutschland: Lap Lambert Academic Publishing, 2017. - 78 c.
9. ZhoraevA.H.Motion of sets and orientation dimension of kinematical spaces //Abstracts of the VI Congress of the Turkic World Mathematical Society.- Astana: L.N. Gumilyov Eurasian National

University, 2017. - P. 124.
10. Zhoraev A. Orientation dimension and orientation constants of kinematical spaces //Abstracts of the Third International Scientific Conference "Actual problems of the theory of control, topo- logy and operator equations".- Bishkek:Kyrgyz Mathematical Society, 2017. - P. 36.
11. Жораев А. Х. Индуктивное определение кинематической размерности топологических пространств // Вестник Института математики НАН КР, 2018, № 1. - С. 139-144.


[^0]:    $\supseteq \subseteq \supseteq \subseteq \supseteq . .$.
    We [4] proposed to use controlled (interactive) motion in non-Euclidean topological spa- ces by means of computer. We implemented the Mobius band as follows. We are standing on a band and see the figure $\supseteq$ (the horizon is less than half of the length of the band). We go and soon we see the figure $\subseteq$.

    We [1] introduced general conception of a kinematical space and implemented some ki- nematical

