### УДК 551.510 (575.27)

# ИЗМЕРЕНИЯ ПРИЗЕМНЫХ КОНЦЕНТРАЦИЙ АЭРОЗОЛЕЙ ИССЫК-КУЛЬСКОЙ КОТЛОВИНЫ, ИХ МИКРОСТРУКТУРА И НЕКОТОРЫЕ МИКРОФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ

# Т.Д. Саргазаков, Ш. Жусупкельдиев

Получены микрофизические параметры бимодальных логнормальных распределения по размерам приземных аэрозолей по результатам измерений на оз. Иссык-Куль 4-канальным прибором 831 Aerosol Mass Monitor в период со 2 по 7 июня 2017 г. Концентрации не превышают предельно допустимых норм.

Ключевые слова: аэрозоли; бимодальное логнормальное распределение; микрофизические параметры.

# MEASUREMENTS OF SURFACE AEROSOL CONCENTRATIONS OF ISSYK-KUL BASIN, THEIR MICROSTRUCTURE AND SOME MICROPHYSICAL CHARACTERISTICS

#### T.D. Sargazakov, Sh. Jusupkeldiev

The micro-physical parameters of bimodal lognormal distribution of the surface aerosols were obtained based on the measurements from Issyk-Kul using a 4 channeled device 831 Aerosol Mass Monitor in the period from June 2 to June 7, 2017. The concentrations do not exceed the maximum permissible standards.

Keywords: aerosols; bimodal lognormal distribution; microphysical parameters.

Введение. Аэрозоли – это твердые, жидкие, или состоящие из смеси различных фаз частицы, взвешенные в воздухе. Они важны, поскольку влияют на наше здоровье, на качество воздуха, которым мы дышим (особенно это относится к наиболее проникающим в легкие аэрозолям субмикронных размеров с радиусом r < 1 мкм), они влияют на образование облаков, на метеорологические процессы и климат. Аэрозоли попадают в атмосферу двумя путями: через эмиссию с поверхности земли или из космоса; через гомогенную нуклеацию из газов атмосферы (в основном из паров воды и серной кислоты) [1].

Выделяют три фракции размеров частиц: мелкодисперсную, с радиусами r = 0,05–0,1 мкм; субмикронную, с радиусами r = 0,1–1,0 мкм; и крупнодисперсную, с r > 1,0 мкм [2]. Первые две фракции определяются такими процессами, как: гомогенная нуклеация, конденсация, коагуляция (соударение и слияние частиц), растворением и химическими реакциями газов атмосферы на поверхности и внутри аэрозолей, а также эмиссией малых частиц от различных источников (пыль, автомобили, сжигание углеводородных соединений и т. д.). Они часто образуют одну единую фракцию (одну моду). Крупнодисперсная фракция (вторая мода), обусловлена также конденсацией, коагуляцией частиц и эмиссионными процессами. Сухое осаждение, вымывание, а во второй моде еще и седиментация, являются важными стоками аэрозолей из атмосферы.

В связи с этим, а также из-за нечувствительности измерительных приборов к мелкодисперсной фракции, в данной работе рассматриваются субмикронные и крупнодисперсные аэрозоли (две моды). В качестве аппроксимации распределения микрофизических свойств частиц (масса, объем, площадь и счетная концентрация) от их радиуса, взята бимодальная с двумя модами логарифмически нормальных распределений [2, 3]. На основе пятиканальных измерений, построены параметры распределений аэрозолей для различных населенных мест: г. Балыкчи, г. Чолпон-Ата, п. Бозтери, г. Каракол, п. Каджи-Сай. При этом, во всех пунктах, измерения проводились у озера, на трассе и в поле, с выделением трех типов аэрозолей морского, анропогенного (углеродного) и пылевого. Полученные распределения могут быть использованы как граничные и начальные условия для аэрозольных моделей тропосферы.

|          | Габлица 1 – Перечень пунктов измерении |                                                                            |  |  |  |  |  |  |
|----------|----------------------------------------|----------------------------------------------------------------------------|--|--|--|--|--|--|
| №<br>п/п | Пункт наблюдения                       | Примечания                                                                 |  |  |  |  |  |  |
| 1        | Балыкчи, трасса                        | Ветер, переменная облачность, 2 и 7 июня 2017 г.                           |  |  |  |  |  |  |
| 2        | Балыкчи, у озера                       | Ветер, облачно, 2 июня 2017 г., берег, 15 ч 40 м                           |  |  |  |  |  |  |
| 3        | Балыкчи, поле                          | Ветер, малооблачно, 2 и 7 июня 2017 г.                                     |  |  |  |  |  |  |
| 4        | Бозтери, трасса                        | Малооблачно, 2 и 3 июня 2017 г., ремонтные работы дороги                   |  |  |  |  |  |  |
| 5        | Бозтери, у озера                       | Малооблачно, 2 и 3 июня 2017 г., пирс, 70 м от берега                      |  |  |  |  |  |  |
| 6        | Бозтери, поле                          | Малооблачно, 2 и 3 июня 2017 г., более 70 м над уровнем моря               |  |  |  |  |  |  |
| 7        | Каракол, трасса, центр                 | Малооблачно, 4 и 5 июня 2017 г., окраина и центр                           |  |  |  |  |  |  |
| 8        | Жети-Огуз                              | После дождя, 5 июня 2017 г., 12 ч 20 м                                     |  |  |  |  |  |  |
| 9        | Барскоон                               | Ливень, 5 июня 2017 г., 14 ч 00 м                                          |  |  |  |  |  |  |
| 10       | Каджи-Сай, центр                       | После дождя, 5 июня 2017 г., 15 ч 40 м                                     |  |  |  |  |  |  |
| 11       | Каджи-Сай, трасса                      | После дождя, 5 и 6 июня 2017 г., ясная погода                              |  |  |  |  |  |  |
| 12       | Каджи-Сай, у озера                     | После дождя, 5 и 6 июня 2017 г., ясная погода, п-т Алтын-Жеек, пирс        |  |  |  |  |  |  |
| 13       | Каджи-Сай, поле                        | После дождя, 5 и 6 июня 2017 г., ясная погода, более 50 м над уровнем моря |  |  |  |  |  |  |

| Таблица | 1 — Перече | ень пунктор | измерений  |
|---------|------------|-------------|------------|
| таблица | i incpent  | and mynkron | nsmepennin |

Таблица 2 – Массовые концентрации аэрозолей (мкг/м<sup>3</sup>) соответствующих размеров

| в пунктах измерений, согласно таблице 1 |      |       |      |       |       |      |       |      |      |      |      |      |     |
|-----------------------------------------|------|-------|------|-------|-------|------|-------|------|------|------|------|------|-----|
| $N_{\underline{0}} =$                   | 1    | 2     | 3    | 4     | 5     | 6    | 7     | 8    | 9    | 10   | 11   | 12   | 13  |
| PM10                                    | 39.5 | 17.7  | 26.5 | 146.5 | 30.83 | 28.2 | 101.1 | 9.2  | 15.2 | 7.3  | 22.8 | 5.68 | 7.7 |
| PM4                                     | 18.6 | 13.45 | 14.2 | 46.91 | 14.84 | 13.3 | 41.13 | 8.45 | 8.3  | 5.45 | 8.47 | 4.65 | 5.4 |
| PM2.5                                   | 10.2 | 6.75  | 7.58 | 25.59 | 7.013 | 6.83 | 21.14 | 6.3  | 4.85 | 3.9  | 3.2  | 2.67 | 3.3 |
| PM1                                     | 3.73 | 1.55  | 1.55 | 5.025 | 2.263 | 2.58 | 7.075 | 3.95 | 2.25 | 1.85 | 1.47 | 1.38 | 1.5 |
| TSP                                     | 50.3 | 17.7  | 31.9 | 236.7 | 35.29 | 34.6 | 129.9 | 10.2 | 18.7 | 9.1  | 29.4 | 5.98 | 7.9 |

Результаты измерений. Все измерения проводили в период со 2 по 7 июня 2017 г. с помощью прибора 831 Aerosol Mass Monitor, который показывает массовые концентрации аэрозолей (в мкг на м<sup>3</sup> воздуха) с диаметрами D < 1 мкм (PM1, до ~ 0,5 мкм – чувствительность прибора), D < 2,5 мкм (PM2.5), D < 4 мкм (PM4), D < 10 мкм (PM10) и полную массу всех аэрозолей (TSP). Таким образом, в каждом измерении мы имели массовую концентрацию аэрозолей (мкг/м3) в пяти диапазонах: 0,5-1; 1-2,5; 2,5-4; 4-10 и более 10 мкм в диаметре. Измерения проводили у поверхности земли и на высоте 2,2 м, после чего брали средние значения между ними. Пробные измерения на высотах 4,5 и 6,5 м показали, что они мало отличаются от измерений на более низкой высоте. Эксперименты проводили во всех пунктах: утром, в обед и вечером, и они показали слабые изменения концентраций в течение дня, за исключением измерений у озера, когда утром и вечером массовые концентрации аэрозолей были повышены. Возможно, это объясняется понижением температуры и повышением влажности воздуха в это время, что приводит к увеличению массы аэрозолей за счет их увлажнения.

Все замеры сведены в таблицу 1. В таблице 2 приведены результаты измерений во всех пунктах, согласно таблице 1. Они представляют собой усредненные среднедневные значения, если в примечании таблицы 1 не указано конкретное время.

Метод построения бимодальных логнормальных распределений. Распределения частиц по размерам крупнодисперсной фракции определяется в основном коагуляцией и седиментацией, благодаря чему, наиболее точно это распределение описывается логарифмически нормальным распределением [2–4]:

$$dx(r) = \frac{Xdr}{r\sqrt{2\pi}\ln\sigma} \exp\left[-\frac{\left(\ln r/\bar{r}_x\right)^2}{2\ln^2\sigma}\right],$$
 (1)

где x – обозначение распределений по массе m, объему v, площади a, и концентрации n (соотв. в мкг/м<sup>3</sup>, мкм<sup>3</sup>/см<sup>3</sup>, мкм<sup>2</sup>/см<sup>3</sup>, частиц/см<sup>3</sup>) частиц в единице объема воздуха и интервале dr радиуса частиц; Х – обозначение полных: массы М (мкг/ м<sup>3</sup>), объема V (мкм<sup>3</sup>/см<sup>3</sup>), площади A (мкм<sup>2</sup>/см<sup>3</sup>), и концентрации N (частиц/см<sup>3</sup>);  $\overline{r_x}$  – модальные или геометрически средние радиусы соответствующих распределений; о – геометрически-стандартное отклонение, для всех распределений одинаковое [5]. Поскольку мы имеем массовые концентрации частиц в пяти диапазонах: 0,5-1; 1-2,5; 2,5-4; 4-10 и более 10 мкм в диаметре, то для расчетов средне-геометрических диаметров распределений и стандартного отклонения о, первый диапазон не рассматривался (здесь накладываются субмикронные и крупнодисперсные фракции), и в каждом следующем диапазоне все частицы имеют одинаковый средний диаметр, а именно:  $D_1 = 1,75, D_2 =$ 3,25, D<sub>3</sub> = 7, а для частиц более 10 мкм в диаметре было выбрано  $D_4 = 11,5$  мкм.

Вестник КРСУ. 2017. Том 17. № 12

Модальный массовый диаметр и стандартное отклонение вычисляются по следующим формулам:

$$\ln \bar{D}_{m} = \left(\sum_{j=1}^{4} m_{j+1} \ln D_{j}\right) / M_{L},$$

$$\ln \sigma = \sqrt{\left(\sum_{j=1}^{4} m_{j+1} \ln^{2} \frac{D_{j}}{\bar{D}_{m}}\right) / M_{L}},$$
(2)

где  $m_j$  – масса аэрозолей в соответствующем диапазоне;  $M_L$  – масса всех аэрозолей, исключая первый диапазон и  $\overline{D}_m = 2\overline{r}_m$ . Полагая, что плотность вещества аэрозолей  $\rho_a$  в пределах одной фракции одинакова, получаем:  $\overline{r}_V = \overline{r}_m$ . Для распределения счетной концентрации аэрозолей, находим:

$$\ln \bar{D}_{n} = \left(\sum_{j=1}^{4} n_{j+1} \ln D_{j}\right) / N_{L},$$

$$N_{L} = \sum_{j=1}^{4} n_{j+1}, \quad n_{j+1} = \frac{6m_{j+1}}{\pi \rho_{a} D_{j}^{3}}.$$
(3)

Из (1) интегрированием можно получить [6], [7], так что полная масса и полная поверхность аэрозолей крупнодисперсной фракции будут равны:

$$M = \frac{4}{3} \pi \rho_a N \overline{r_n^3} \exp\left[\frac{9 \ln^2 \sigma}{2}\right],\tag{4}$$

$$A = 4\pi N \overline{r_n}^2 \exp\left[2\ln^2 \sigma\right], \tag{5}$$

где N – полная счетная концентрация аэрозолей (частиц/см<sup>3</sup>);  $\bar{r}_n = \bar{D}_n / 2$  Так как N = N<sub>L</sub>+n<sub>1</sub>, где n<sub>1</sub> – счетная концентрация аэрозолей диаметром меньше 1 мкм (1<sup>в</sup> диапазон), то используя (4), можно получить уравнение:

$$M_{L} + \frac{4}{3}\pi\rho_{a}r_{y}^{3}n_{1} = \frac{4}{3}\pi\rho_{a}(N_{L} + n_{1})\overline{r_{n}^{3}}\exp\left[\frac{9\ln^{2}\sigma}{2}\right], \quad (6)$$

где  $r_y$  – средний радиус частиц в первом диапазоне, который принят для расчетов равным 0,4 мкм. Из уравнения (6) мы легко находим  $n_1$ , затем N =  $N_1 + n_1$ , M – из (4), и A – из (5).

Для расчетов удобно, как это используется во всех аэрозольных моделях [8], разбить непрерывное изменение радиусов аэрозолей г на дискретное (на бины), основываясь на геометрически увеличивающемся частичном объеме. Если  $r_i$  и  $v_i$  – это радиус и объем, соответственно частиц, сосредоточенных в i-ом бине, то устанавливая  $v_{i+1}/v_i = VRAT$ = const, с учетом сферичности частиц, имеем:

$$\begin{aligned} r_{i+1} &= VRAT^{1/3}r_i, \quad r_{iup} = r_i \frac{(2VRAT)^{1/3}}{(VRAT+1)^{1/3}}, \\ \Delta v_i &= 2\frac{VRAT-1}{VRAT+1}v_i \quad 8 \\ \Delta r_i &= \left(\frac{2}{VRAT+1}\right)^{1/3} (VRAT^{1/3}-1)r_i \quad , \end{aligned}$$
(7)

где г<sub>іир</sub> – верхняя граница радиуса бина і;  $\Delta v_i u \Delta r_i$  – ширина бина і в объеме и в радиусе, соответственно. В данной работе принято VRAT = 2,  $r_1 = 0,01$  мкм и рассматривается 40 бинов ( $r_{40} \approx 82$  мкм), при этом  $\Delta r_i \approx 0.23r_i$ .

Теперь, используя такое разбиение, мы можем в каждом бине і рассчитать концентрации  $n_i$  и массы  $m_i$  аэрозолей, используя значения N и M и формулу (1), и далее найти объем V<sub>i</sub> и площадь  $a_i$  аэрозолей в бине i, соответственно по формулам V<sub>i</sub> =  $m_i/\rho_a$ ,  $a_i = 3V_i/r_i$ . Далее модальный поверхностный радиус получаем из формулы:

$$\overline{r}_{S} = \frac{\sum_{i=1}^{40} a_{i} \ln r_{i}}{A}.$$
(8)

Таким образом находятся все микрофизические параметры логнормальных распределений крупнодисперсной фракции аэрозолей. Поскольку чувствительность измерительного прибора составляет 0,5 мкм в диаметре, то для восстановления аппроксимационного логнормального распределения по массе субмикронной и мелкодисперсной фракций аэрозолей, входящих в нечувствительную зону, нам необходимо знать массу всей этой моды (назовем ее нулевой) M<sub>0</sub>, модальный радиус r<sub>m0</sub> и стандартное отклонение о<sub>0</sub>. Высота равномерного распределения сульфатных аэрозолей (основной компонент фракции мелких частиц) для средних широт составляет 1,5 км [9], а в работе [4] на основе многочисленных лидарных измерений аэрозолей на станции "Теплоключенка" (оз. Иссык-Куль) для высот пограничного слоя 1-1,5 км установлено, что значения  $r_{m0} = 0,08-0,11$  мкм и  $\sigma_0 = 1,4-1,7$ . По-этому, в данной работе для всех измерений приземных концентраций аэрозолей было принято r<sub>m0</sub> = 0,1 мкм и σ<sub>0</sub> = 1,55.

Измеренная масса аэрозолей первого диапазона (PM1) включает частицы с радиусами от 0,25 до 0,5 мкм. Это соответствует бинам с номерами i = 15, 16, 17, 18. Если из измеренной массы PM1 вычесть известные массы аэрозолей крупнодисперсной фракции, сосредоточенных в этих бинах, то мы получим массу аэрозолей мелкой фракции в этих же бинах. Просуммировав массы по этим бинам мелкой фракции, с использованием формул (1) и (7) получим уравнение, из которого найдем  $M_0$  – массу всех мелких частиц. Найдя по формулам (1) и (7) с известными значениями  $M_0$ ,  $r_{m0}$  и  $\sigma_0$ , массу  $m_{i0}$  аэрозолей во всех бинах, мы найдем соответствующие значения объемов, концентраций и поверхностей в бинах по формулам:

$$V_{i0} = \frac{m_{i0}}{\rho_{a0}}, \qquad n_{i0} = \frac{V_{i0}}{v_i}, \qquad a_{i0} = \frac{3V_{i0}}{r_i}.$$
 (9)

Вестник КРСУ. 2017. Том 17. № 12

| Гаолица 3 – Микрофизические параметры первой моды для измерении, приведенных в таолице Г |                |                          |                       |                      |              |                      |  |  |  |
|------------------------------------------------------------------------------------------|----------------|--------------------------|-----------------------|----------------------|--------------|----------------------|--|--|--|
| N⁰                                                                                       | $M_0,\mu g/m3$ | V <sub>0</sub> , µm3/cm3 | $S_{0}, \mu m 2/cm 3$ | r <sub>s0</sub> , μm | $N_0$ , cm-3 | r <sub>n0</sub> , μm |  |  |  |
| 1                                                                                        | 3.988          | 2.215                    | 71.896                | 0.083                | 1233.523     | 0.056                |  |  |  |
| 2                                                                                        | 1.153          | 0.641                    | 20.790                | 0.083                | 356.687      | 0.056                |  |  |  |
| 3                                                                                        | 0.345          | 0.192                    | 6.216                 | 0.083                | 106.652      | 0.056                |  |  |  |
| 4                                                                                        | 15.726         | 8.737                    | 283.540               | 0.083                | 4864.696     | 0.056                |  |  |  |
| 5                                                                                        | 2.867          | 1.593                    | 51.687                | 0.083                | 886.790      | 0.056                |  |  |  |
| 6                                                                                        | 4.318          | 2.399                    | 77.852                | 0.083                | 1335.711     | 0.056                |  |  |  |
| 7                                                                                        | 12.126         | 6.737                    | 218.631               | 0.083                | 3751.043     | 0.056                |  |  |  |
| 8                                                                                        | 5.407          | 2.703                    | 87.732                | 0.083                | 1505.216     | 0.056                |  |  |  |
| 9                                                                                        | 4.210          | 2.105                    | 68.308                | 0.083                | 1171.954     | 0.056                |  |  |  |
| 10                                                                                       | 3.333          | 1.852                    | 60.100                | 0.083                | 1031.141     | 0.056                |  |  |  |
| 11                                                                                       | 3.227          | 1.793                    | 58.191                | 0.083                | 998.386      | 0.056                |  |  |  |
| 12                                                                                       | 2.394          | 1.330                    | 43.156                | 0.083                | 740.425      | 0.056                |  |  |  |
| 13                                                                                       | 2.519          | 1.399                    | 45.415                | 0.083                | 779.177      | 0.056                |  |  |  |

.

Таблица 4 – Микрофизические параметры второй моды для измерений, указанных в таблице 1

| №<br>п/п | M, $\mu g/m^3$ | $r_m = r_v, \ \mu m$ | V, μm <sup>3</sup> /cm <sup>3</sup> | S, $\mu m^2/cm^3$ | r <sub>s</sub> , μm | N, cm-3 | r <sub>n</sub> , μm | σ    |
|----------|----------------|----------------------|-------------------------------------|-------------------|---------------------|---------|---------------------|------|
| 1        | 45.27          | 2.82                 | 20.03                               | 22.33             | 2.10                | 0.78    | 1.03                | 1.86 |
| 2        | 15.97          | 1.42                 | 7.98                                | 17.67             | 1.26                | 1.09    | 1.01                | 1.41 |
| 3        | 28.14          | 2.79                 | 14.07                               | 11.14             | 2.33                | 0.31    | 0.98                | 2.09 |
| 4        | 234.01         | 3.50                 | 103.54                              | 132.09            | 2.06                | 4.97    | 1.05                | 1.76 |
| 5        | 32.04          | 2.56                 | 16.02                               | 19.07             | 1.97                | 0.68    | 1.05                | 1.81 |
| 6        | 31.21          | 2.76                 | 15.61                               | 17.91             | 2.07                | 0.63    | 1.05                | 1.83 |
| 7        | 121.30         | 2.96                 | 53.67                               | 64.28             | 2.08                | 2.30    | 1.06                | 1.80 |
| 8        | 5.31           | 1.71                 | 3.54                                | 3.54              | 1.19                | 0.12    | 0.95                | 1.97 |
| 9        | 15.72          | 2.65                 | 13.10                               | 14.02             | 2.07                | 0.48    | 1.02                | 1.89 |
| 10       | 6.47           | 2.27                 | 3.60                                | 2.91              | 1.79                | 0.09    | 0.95                | 2.09 |
| 11       | 28.09          | 3.12                 | 13.38                               | 16.93             | 2.09                | 0.55    | 1.19                | 1.69 |
| 12       | 4.19           | 1.76                 | 2.10                                | 2.71              | 1.42                | 0.11    | 1.00                | 1.79 |
| 13       | 5.79           | 1.86                 | 3.22                                | 4.12              | 1.50                | 0.17    | 0.99                | 1.80 |

По этим формулам, проведя соответствующие суммирования, как описывалось выше, найдем полные: объем  $V_0$  (мкм<sup>3</sup>/см<sup>3</sup>), концентрацию  $N_0$  (частиц/см<sup>3</sup>), поверхность  $S_0$  (мкм<sup>2</sup>/см<sup>3</sup>) и соответствующие модальные радиусы  $\mathbf{r}_{v0} = \mathbf{r}_{m0}$ ,  $\mathbf{r}_{n0}$  и  $\mathbf{r}_{s0}$ фракции мелких частиц, где  $\rho_{a0}$  – их плотность.

Результаты вычислений микрофизических параметров. Субмикронная фракция аэрозолей формируется в результате таких процессов, как гомогенная нуклеация, конденсация паров воды, кислот H<sub>2</sub>SO<sub>4</sub>, HNO<sub>2</sub> и других газов, химических реакций на поверхности и внутри частиц, растворения газов (CO<sub>2</sub>, HCl, NH<sub>3</sub> и др.), коагуляции жидких и твердых (элементарный и органический углерод) частиц [5]. Седиментационное осаждение довольно незначительно, и основными стоками этих аэрозолей являются сухое осаждение (с характерным временем поглощения  $\tau_{\text{погл}} \sim 200$  ч) и вымывание ( $\tau_{\text{вым}} \sim 100$  ч) [9]. Поэтому можно принять однородность этой фракции, как по времени, так и по всей Иссык-Кульской котловине. Содержание кислот в таких водных аэрозолях сильно зависит от влажности и температуры воздуха [10], поэтому плотность вещества аэрозолей принята в среднем  $\rho_{a0} =$ 1,8 г/см<sup>3</sup> [4], с учетом твердых включений в них.

Для карбоновых аэрозолей крупной фракции на трассе плотность частиц составила  $\rho_2 = 2,26$  г/ см<sup>3</sup>, для пылевого в поле и для морского у озера плотность была принята равной  $\rho_a = 2,0$  г/см<sup>3</sup> [4]. В условиях повышенной влажности (измерения 8, 9, 10, таблица 1) для мелкой фракции плотность была принята равной 1,9 г/см<sup>3</sup>, а для крупной фракции – 1.5 г/см<sup>3</sup>.

В таблице 3 приведены микрофизические параметры логнормальных распределений (1) субмикронных фракций (первые моды), вычисленных для измерений, приведенных в таблице 1, по описанному выше методу. Здесь  $M_0$ ,  $V_0$ ,  $S_0$ ,  $N_0$  – полная масса (мкг/м<sup>3</sup>), полный объем (мкм<sup>3</sup>/см<sup>3</sup>), полная поверхность (мкм<sup>2</sup>/см<sup>3</sup>) и полная концентрация (частиц/см<sup>3</sup>) всех аэрозолей данной фракции, r<sub>n0</sub> и r<sub>s0</sub> (в мкм) – модальные радиусы поверхностных и числовых распределений, соответственно. Для всех распределений принято  $\sigma_0 = 1,55$  и  $r_{m0} = r_{v0} = 0,1$  мкм.

В таблице 4 приведены те же микрофизические параметры, только для вторых крупнодисперсных

Вестник КРСУ. 2017. Том 17. № 12



Рисунок 1 – Бимодальные распределения объемных концентраций аэрозолей для пунктов измерений 4, 5, 6 и 11, 12, 13 (таблица 1). По вертикальной оси откладывается функция dV/dlog<sub>10</sub>r (мкм<sup>3</sup>/см<sup>3</sup> по формуле (10)), по горизонтальной оси – радиус частиц г (мкм)

мод, вычисленных по приведенным выше формулам, согласно таблице 1.

По результатам лазерного зондирования на оз. Иссык-Куль [4] в июне 2003 г., среднемесячные значения площади поверхности и массовой концентрации аэрозольных частиц в пограничном слое (1–3 км) второй моды, соответственно составили: 35,0±19,4 мкм<sup>2</sup>/см<sup>3</sup> и 24,2±15,8 мкг/м<sup>3</sup>, а средний радиус частиц по счетной концентрации – 0,58± 1,04 мкм. Сравнение с соответствующими результатами приземных концентраций, приведенных в таблице 4, показывает хорошее соответствие, что согласуется с тем фактом, что высота постоянства концентраций частиц в атмосфере составляет 1,5 км [9]. Данные таблиц 3 и 4 показывают, что доля мелкой фракции частиц в общем балансе составляет около 10 % и менее, как и было отмечено в работе [4].

Аппроксимация логнормальными распределениями объемных концентраций аэрозолей для пунктов с. Бозтери и с. Каджи-Сай (измерения 4, 5, 6 и 11, 12, 13, таблица 1) показаны на рисунке 1. Поскольку радиусы частиц на графике откладывались в логарифмическом масштабе, то функции распределения вычислялись как

$$\frac{dV}{d\log_{10} r} \approx \frac{V_i}{\log_{10} r_{iup} / r_{i-lup}} = \frac{3V_i}{\log_{10} VRAT} , \quad (10)$$

где  $V_i$  – объем аэрозолей в бине і (мкм<sup>3</sup>/см<sup>3</sup>).

Сравнение распределений, показанных на рисунке 1, с соответствующими распределениями частиц фонового аэрозоля в пограничном слое на оз. Иссык-Куль [4], отражает похожую бимодальную микроструктуру и близкие значения функций распределения на пиках соответствующих мод.

В заключение хотелось бы отметить, что проведенные авторами измерения на оз. Иссык-Куль со 2 по 7 июня 2017 г. – до открытия туристического сезона, показали во всех пунктах низкие концентрации частиц, не превышающие допустимых норм [11].

Данная работа поддержана Департаментом науки при МОиН КР. Договор № 68 на выполнение научно-исследовательской работы, 2017. Тема проекта: "Измерение и анализ приземных концентраций вредных примесей в атмосфере Иссык-Кульской котловины".

## Литература

- Vehkamaki H. An improved parameterization for sulfuric acid – water nucleation rates for tropospheric and stratospheric conditions / H. Vehkamaki, M. Kulmala, I. Napari, et al. // J. Geophys. Res. V.107, N.D22, 2002. P. 4622.
- Довгалюк Ю.А. Физика водных и других атмосферных аэрозолей: учебн. пособие / Ю.А. Довгалюк, Л.С. Ивлев. Л.: Изд-во Ленингр. ун-та, 1977. 256 с.
- Райст П. Аэрозоли. Введение в теорию / П. Райст; пер. с англ. М.: Мир, 1987. 280 с.
- Чен Б.Б. Оптические свойства аэрозолей Центрального Тянь-Шаня по данным лазерного зондирования / Б.Б. Чен, Л.Г. Свердлик. Бишкек: Изд-во КРСУ, 2006. 274 с.
- Jacobson M.Z. Fundamentals of Atmospheric Modeling / M.Z. Jacobson. Cambridge University Press: Second edition. New York, 2005. 813 p.
- Hofmann D.J. Ballon born measurements of aerosol, condensation nuclei, and cloud particles in stratosphere at McMurdo station, Antarctica, during the spring of 1987 / D.J. Hofmann, J.M. Rozen, J.W. et al. // J. Geophys. Res. V.94. D9. 1989. P. 11253– 11269.
- Прудников А.П. Интегралы и ряды: в 3 т. Т. 1. Элементарные функции / А.П. Прудников, Ю.А. Брычков, О.И. Маричев. М.: Физматлит, 2003. 632 с.
- Toon O.B. A multidimensional model for aerosols: description of computational analogs / O.B. Toon, R.P. Turco, D. Westphal, et al. // J. Atmos. Sci. 1988. V. 45. No.15. P. 2123–2143.
- Израэль Ю.А. Кислотные дожди / Ю.А. Израэль, И.М. Назаров, А.Я. Прессман и др. Л.: Гидрометеоиздат, 1989. 270 с.
- Саргазаков Т.Д. Анализ бинарной H<sub>2</sub>SO<sub>4</sub> H<sub>2</sub>O жидкой системы применительно к стратосферным аэрозолям / Т.Д. Саргазаков // Вестник КРСУ. 2014. Том 14. № 2. С.148–154.
- Национальный доклад о состоянии окружающей среды в КР за 1998–1999 гг. Бишкек, 2000. 160 с.