УДК 544.723.2:62-664.4 (575.21)

СОПОСТАВИТЕЛЬНАЯ ХАРАКТЕРИСТИКА ТВЕРДЫХ ПРОДУКТОВ НЕПОЛНОГО СГОРАНИЯ БУРОГО УГЛЯ КАРА-КЕЧЕ

С.О. Карабаев, И.М. Локшина, А.В. Харченко, Д.А. Субанкулова, А.В. Токарев, В.П. Макаров

Приведен сравнительный анализ функционального состава, морфологии поверхности, структуры твердых продуктов неполного сгорания угля Кара-Кече в реакторе при восходящем потоке кислорода (воздуха).

Ключевые слова: уголь Кара-Кече; морфология; структура; состав.

COMPARATIVE CHARACTERISTIC OF SOLID PRODUCTS OF KARA-KECHE BROWN COAL INCOMPLETE COMBUSTION

S.O. Karabaev, I.M. Lokshina, A.V. Kharchenko, D.A. Subankulova, A.V. Tokarev, V.P. Makarov

The article regards the comparative analysis of the functional composition, surface morphology, the structure of solid products of Kara-Keche coal incomplete combustion in the reactor under ascending oxygen (air) stream.

Keywords: Kara-Keche coal; morphology; structure; composition.

Введение. Настоящая работа посвящена сопоставительной характеристике морфологии поверхности, структуры, функционального состава продуктов сгорания бурого угля Кара-Кече. Удельные площади поверхности исследуемых образцов, определенных по метиленовому синему и метиловому оранжевому, представлены в работе [1]. Техническая характеристика сжигаемого топлива дана в [2].

Эксперимент. Бурый уголь Кара-Кече сжигался при использовании экспериментального стенда [3], принципиальная схема которого представлена на рисунке 1.

Процесс сжигания проводили путем подачи в камеру сгорания кислорода (воздуха) с расходом 3 л/мин. Фронт горения распространялся навстречу потоку кислорода (воздуха), при этом пламя распространялось на все сечение трубы, заполненной 1 кг угля. Температура в зоне горения угля под встречным потоком кислорода достигала 800 °C, а в зоне горения угля под встречным потоком воздуха – 700 °C. Время сжигания топлива составило 30 мин. Масса полученных несгоревших остатков составляла не более 500 г.

Исследовали исходный (UG) и диспергированный (UGd) образцы угля Кара-Кече, а также

четыре образца твердых продуктов сгорания топлива. Zug(B) – образец, полученный при сгорании угля Кара-Кече в реакторе при восходящем потоке воздуха. Частицы образца представляли собой гранулы черного цвета, с размерами не больше 3 мм. Zugd(B) – образец, полученный при диспергировании Zug(B) на шаровой мельнице в течение 1 минуты. Это порошок черного цвета с размерами частиц не больше 0,5 мм. Zug(O) - образец, полученный при сгорании угля Кара-Кече в реакторе при восходящем потоке кислорода. Частицы образца представляли собой гранулы черного цвета, с размерами не больше 3 мм. Zugd(O) - образец, полученный при диспергировании Zug(O) на шаровой мельнице в течение 1 минуты. Это порошок черного цвета с размерами частиц не больше 0,5 мм.

ИК-спектры угля Кара-Кече и твердых продуктов его сжигания в потоке кислорода и воздуха, соответственно, записывали на ИК-Фурьеспектрометре Nicolet Avatar 370 GDTS в таблетках с КВг в соотношении 1:300, в интервале значений частот от 450 до 4000 см⁻¹. Результаты растровой электронной микроскопии исследуемых образцов получены на сканирующем электронном микроскопе типа TESLA BS-300. Рентгенофазовый анализ образцов проводили на рентгеновском

Вестник КРСУ. 2017. Том 17. № 12

Рисунок 1 – Принципиальная схема экспериментальной установки

Рисунок 2 – ИК-спектры образцов угля Кара-Кече и твердых продуктов его сгорания

дифрактометре общего назначения ДРОН-4 с генератором рентгеновского излучения мощностью 1,5 кВт.

Результаты и обсуждение. ИК-спектры исследуемых образцов представлены на рисунке 2 и в таблице 1.

Сравнение спектров исходных и диспергированных образцов угля показало, что в процессе диспергирования топлива существенных изменений по функциональному составу не происходит. Вместе с тем, было установлено, что на всех спектрах твердых продуктов сгорания исходного образца угля отсутствуют полосы поглощения, характеризующие валентные колебания –С-Н алифатических углеводородов, С = О в карбоксильных, карбонильных группах, деформационные колебания –ОН групп в спиртах и карбоновых кислотах, что вполне объяснимо процессами выгорания и частичного пиролиза угля, которые приводят к потере не только функциональных кислородсодержащих

	Частоты поглощения, см -1		
Группа	UG -1	Zug(B) -1	Zug(O) -1
	UGd -2	Zugd(B) -2	Zugd(O) - 2
Валентные колебания ОН групп в неассоциированных	33771	34001,2	3446 ^{1,2}
молекулах	3371 ²	слаб.	слаб.
Валентные колебания -С-Н алифатических углеводоро-	2919 ¹	-	-
дов	2920 ²	-	-
Валентные колебания С = О в карбоксильных,	17001,2	-	-
карбонильных группах	слаб.	-	-
Валентные колебания С = С, сопряженной с С = О или	15901	1600 ^{1,2}	$1600^{1,2}$
Ar (арил), полиароматические углеводороды	1593 ²	CTRAD	CTRAD
Валентные колебания ароматического кольца	1375	6.140.	e 5100.
Валентные колебания карбонат СО ₃ 2- и гидрокарбонат	13751	_	_
НСО3- ионов	1377 ²		
Валентные колебания С-О в карбоксильной группе	1254 ¹		
Ассиметричные колебания внешних Si–O-связей	1256 ²	100013	100013
		12001,2	12001,2
Валентные колебания гидросульфат HSO ₄ - и сульфат	11501,2	-	-
SO ₄ 2- ионов			
Деформационные колебания – ОН групп в спиртах	10341,2	-	-
и карбоновых кислотах			
Валентные колебания Si-O	10341,2		
	1010 ^{1,2}	-	-
	9141,2		
Деформационные колебания Si-O, Si-O-Me	752-4111	432-404 ¹	419 ¹
	755-408 ²	540-403 ²	418 ²

Таблица 1 – Характеристические полосы поглощения образцов угля Кара-Кече и твердых продуктов его сгорания

Рисунок 3 – Микрофотографии образцов угля Кара-Кече и твердых продуктов его сгорания при увеличении x50

Вестник КРСУ. 2017. Том 17. № 12

Рисунок 4 – Микрофотографии образцов угля Кара-Кече и твердых продуктов его сгорания при увеличении х200

Рисунок 5 – Рентгенограммы образцов угля Кара-Кече и твердых продуктов его сгорания

групп, алифатической периферии, но и минеральных компонентов (карбонаты, сульфаты, частично силикаты), являющихся, по всей видимости, составной частью золы уноса [4, 5]. Уменьшение интенсивности полос поглощения, характеризующих валентные колебания C = C в сопряженных системах, можно объяснить либо неполным сгоранием конденсированной ароматической части угля,

Вестник КРСУ. 2017. Том 17. № 12

либо образованием новых молекулярных ядер, что является наиболее важной стадией формирования сажевых частиц. Известно [6], что при частичном окислении или пиролизе угля в пламени или камере сгорания образуются простейшие углеводородные радикалы, реакции между которыми приводят к формированию полииновых молекул и молекул полиароматических углеводородов.

На рисунках 3 и 4 представлены результаты растровой электронной микроскопии исследуемых образцов угля и твердых продуктов его сгорания.

На фотографиях видно, что твердые продукты сгорания угля, в целом, сохранили морфологию поверхности сжигаемого топлива. Наблюдаются частицы осколочной формы различной степени дисперсности. Размер частиц колеблется от 2 до 1000 мкм. Поверхность частиц имеет слоистую структуру. Формы и размеры частиц исходных и диспергированных образцов мало различаются между собой, что объясняется "мягкими" условиями диспергирования.

На рисунке 5 представлены дифрактограммы исследуемых образцов. Идентификация пиков проведена с использованием файла порошковой дифракции PDF-2 (Release 2009). Анализ дифрактограмм [7] показывает, что спектры всех образцов очень похожи, малоинформативны, представляют собой в основном размытые линии-гало, характерные для аморфных материалов, что свидетельствует о высоком содержании в них сажевой составляющей. Однако в спектрах обоих образцов угля можно видеть присутствие следующих минеральных компонентов: оксида кремния в разных модификациях, карбид-нитрида кремния и графита.

В спектрах твердых продуктов сгорания угля, наряду с пиками оксида кремния, обнаружены пики, соответствующие оксидам титана, железа, магния, алюминия.

Выводы. Все изложенное выше позволяет сделать вывод, что исследуемые твердые образцы, полученные в заданных режимах сжигания угля Ка-

ра-Кече, представляют собой продукты неполного сгорания топлива. При этом, в условиях проведения эксперимента, главным образом, протекают процессы декарбоксилирования угля, приводящие к потере карбоксильных, карбонильных групп и окисления периферийной алифатической части в исследуемых твердых продуктах сжигания топлива.

Работа выполнена в рамках гранта Министерства образования и науки Кыргызской Республики № 0007285.

Литература

- Karabaev S.O. The specific surface area of the sorbents based on solid products of incomplete combustion of Kara-Keche brown coal / S.O. Karabaev, I.P. Gainullina, D.A. Subankulova // Вестник Кыргыз. национ. ун-та им. Ж. Баласагына. 2017. № 3.С. 15–21.
- Карабаев С.О. Техническая характеристика угля Кара-Кече / С.О. Карабаев, И.М. Локшина, И.П. Гайнуллина // Вестник КРСУ. 2010. Том 10. № 10. С. 158–160.
- Богданов А.С. Физические процессы при сжигании угля Кара-Кече / А.С. Богданов // Вестник КРСУ. 2017. Том 17. № 1. С. 185–187.
- Колесник И.В. Инфракрасная спектроскопия: методическая разработка / И.В. Колесник, Н.А. Саполетова. М.: МГУ, 2011. 88 с.
- Накамото К. ИК спектры и спектры КР неорганических и координационных соединений / К. Накамото / пер. с англ.; под ред. д.х.н., проф. Ю.К. Пентина. М.: Мир, 1991. 536 с.
- Поповичева О.Б. Сажевые аэрозоли в верхней тропосфере: свойства и последствия эмиссии авиации / О.Б. Поповичева, Н.М. Персианцева, Н.А. Зубарева и др. // Препринт НИИЯФ МГУ. 2005. 17/783. 83 с.
- Кузнецова Г.А. Качественный рентгенофазовый анализ: методические указания / Г.А. Кузнецова. Иркутск: ГОУВПО ИГУ, 2005. 25 с.