ИССЛЕДОВАНИЯ ФИЗИКО – МЕХАНИЧЕСКИХ ХАРАКТЕРИСТИК ЗОЛЫ АЛМАТИНСКОГО ТЭЦ-3

Канаев Ашимхан Токтасынович, д.б.н., профессор, НИИ проблем биотехнологии ЖГУ им.И.Жансугурова, Казахстан, 040009 г.Талдыкорган, ул.И.Жансугурова, 187а. e-mail: ashim1959@mail.ru

Баймырзаев Куат Маратович, д.г.н., профессор кафедры естественных дисциплин ЖГУ им.И.Жансугурова, Казахстан, 040009 г.Талдыкорган, ул.И.Жансугурова, 187а.

Сатымбеков Рауан Кулбаевич старший научный сотрудник НИЙ проблем биотехнологии ЖГУ им.И.Жансугурова, Казахстан, 040009 г. Талдыкорган, ул.И.Жансугурова, 187а.

Даулетбаева Маржан к.б.н., доцент стариий научный сотрудник НИИ проблем биотехнологии ЖГУ им.И.Жансугурова, Казахстан, 040009 г.Талдыкорган, ул. Жансугурова, 187а.

Аннотация. В статье рассматриваются комплексное изучение физико-механических свойств исследуемой золы, для дальнейшей ее утилизации

Ключевые слова: зол, золоотвал, химический состав, ТЭЦ-3.

STUDY OF PHYSICAL - MECHANICAL CHARACTERISTICS OF ASH ALMATY TPP-3

Kanaev Ashimhan Toktasynovich, Ph.D., Professor Director of Research Institute of Biotechnology named after I.Zhansugurov ZhSU, Kazakhstan, Taldykorgan 040,009, str.I.Zhansugurova, 187a. e-mail: ashim1959@mail.ru

Baymyrzaev Kuat Maratovich, D.Sc., Professor, Department of Natural Sciences named after I.Zhansugurov ZhSU, Kazakhstan, Taldykorgan 040,009, str. I.Zhansugurova, 187a.

Aytzhanova Marjane Master Research Institute of Biology and Biotechnology KazNU, Kazakhstan, Almaty, 050040, av.al-Farabi, 71

Dauletbaeva Marjan PhD, Associate Professor of the Research Institute of Biology and Biotechnology KazNU, Kazakhstan, Almaty, 050040, av.al-Farabi, 71

Abstract. The article deals with a comprehensive study of the physical and mechanical properties of the investigated ashes for its further utilization

Keywords: angry, ash dump, chemical composition, CHP-3.

Одним из проблем, характерных для развития отрасли энергетики г.Алматы, весьма существенными являются проблемы, связанные с выбросами ТЭЦ-3. Уровень этих проблем изменяется от глобального (газовые выбросы) до регионального (жидкие стоки) и локального – для попутной минеральной продукции в виде золы и шлака [1].

Золошлаковые отходы Алматинского ТЭЦ-3 представляет собой крупнотоннажные не классифицированные отходы производственной деятельности с неопределенными характеристиками. Следовательно, зола - это несгорающий остаток, образующийся из минеральных примесей топлива при полном его сгорании и осажденный из дымовых газов, золоулавливающими устройствами. Золошлаковые отходы Алматинского представляет собой мелкодисперсный минеральный порошок от светло-серого до темносерого цвета. В зависимости от вида топлива зола подразделяется на антрацитовую, каменноугольную, буроугольную, сланцевую, торфяную и др. По способу удаления различают: золу сухого отбора (зола уноса) и мокрого (зола гидроудаления). Зола уноса получается в результате очистки дымовых газов золоуловителями и представляет собой тонкодисперсный материал с очень мелкими частицами, что позволяет использовать ее без дополнительного помола. Зола мокрого отбора образуется при удалении ее с помощью воды в виде пульпы по золопроводам [2].

Объектом исследования в работе явилась зола Алматинского ТЭЦ-3. Пробы исследованной нами золы отобраны из отвалов, непосредственно прилегающих к выводным трубам, через которые зола уносится водой в виде пульпы из котельных установок станции.

Материалы и методы исследований

Объектом исследования явились зола Алматинского ТЭЦ-3, расположенное Илийском районе в п.Отеген, в десяти километрах севернее от г.Алматы (рис.1).

Определение металлов из золы угля (таблица 1) было проведено в соответствии с РД 153-34.0-44.220-2000 атомно-абсорционным методом на спектрофотометре фирмы «РҮЕ UNICAM» (типа SP 2900).

Рисунок 1. Схема расположения карты-золоотвала Алматинского ТЭЦ-3

Химический состав золы экибастузского угля был определен в соответствии с ГОСТ 10538-87 (табл.1), следующими методами: SiO_2 гравиметрическим [3], Al_2O_3 , Fe_2O_3 , MgO_3 , CaO комплексонометрическим [4], TiO_2 спектрофотометрическим [5], Na_2O_3 , K_2O_3 пламеннофотометрическим [6]. Присутствие в золе угля комплексов ценных элементов позволяет рентабельно извлекать их при содержании даже более низких, чем в промышленных рудах.

Результаты исследований

Исследования химического состава зола Алматинского ТЭЦ-3 считается важным фактором для принятия правильного решения при выборе направления их использования и технологии переработки. Состав и свойства зол данного золоотвала определяется количественным соотношением входящих в них минералов, который, в свою очередь, зависит от минералогического состава исходной неозоленной части топлива.

Нами были проведены исследовании по изучению химического состава золы Алматинского ТЭЦ-3, с применением определенного методик химического анализа, которые приведены в таблице 1.

Приведенные в таблице 1 данные показывают, что основная часть золы, образующиеся в котельной, состоит из диоксида кремния (SiO_2) и оксида алюминия (Al_2O_3) , которые в сумме составляют 85 - 87% масс. Как известно, диоксид кремния (SiO_2) (кремнезем) широко распространен в природе в виде минерала кварца, которые входят в состав гранитов и других горных пород. Физические свойства диоксида кремния характеризуются - тугоплавок $(t_{\text{пл}} = 1700^{\circ}\text{C})$, нерастворим в воде, плотность - 2,651 г/см³, бесцветен, обладает высокой твердостью и прочностью.

Содержание оксиида алюминия (Al_2O_3) в составе золоотвалов Алматинского ТЭЦ-3 составляет 15,5%.

По своему химическому свойству диоксид алюминия это бинарное соединение алюминия и кислорода. В природе распространён как основная составляющая часть глинозёма. Также очень важным при оценке золы является содержание различных металлов.

Таблица 1.

Солержание химических элементов в золе Алматинского ТЭП-3

		держин	HE AHIVII	IICCICIIA	Joientel	HOD D 3	DOIL TROIN	iu i iiiicix	010 101	ц	
				Соде	ержани	е оксидо	ов, %				
SiO ₂	NiO ₂	TiO ₂	Al_2O_3	Fe ₂ O ₃	CaO	MgO	MnO	Na ₂ O	K ₂ O	P ₂ O ₅	SO ₃
60,2	1,0	1.0	15,5	4,0	8,67	0,88	0,10	0,60	3,2	1,0	2,3

Из таблицы 1 видно, что зола является богатое оксидами сырье, которое содержит также ряд элементов периодической системы в виде микродобавок.

Потери при прокаливании объясняется наличием несгоревших частиц угля и кокса. Известно, что частицы несгоревшего угля в присутствии влаги окисляются, увеличиваясь при этом в объёме до 15% и более. При повышенном содержании в золе уноса частиц не сгоревшего угля (кокса) вероятность быстрого саморазрушения изделия, поэтому высокое содержание в золе потерь при прокаливании являются нежелательным. Важным этапом при использовании зольного и шлакового сырья является его классификация, в основу которого положены показатели качества материала: модуль основности (гидравлический модуль), силикатный (кремнеземистый) модуль и коэффициент качества (гидравлическая активность). На основании исследований золошлаковых отходов тепловых электростанций, сжигающих топливо различных месторождений, золошлаки в зависимости от состава были разделены на три группы – скрыто активные, активные и инертные. Модуль основности (гидросиликатный модуль) М_о, представляет собой отношение суммы основных оксидов к сумме кислотных оксидов, находится по формуле:

$$M_{\rm o}=\frac{Na_2O+MgO+K_2O+CaO}{Al_2O_3+SiO_2}=\frac{0,60+0,88+3,2+8,67}{60,2+15,5}=0,176$$
 Миликатный (кремнеземистый) модуль $M_{\rm c}$, показывающий отношение оксида

Миликатный (кремнеземистый) модуль M_c , показывающий отношение оксида кремния, вступающего в реакцию с другими оксидами, к суммарному содержанию оксидов алюминия и железа, находится по формуле :

$$M_c = \frac{SiO_2}{Fe_2O_3 + Al_2O_3} = \frac{60,2}{4,0+15,5} = 3,087$$
 качества K, показывает отношение оксидов,

Коэффициент качества К, показывает отношение оксидов, повышающих гидравлическую активность к оксидам, снижающим ее, находится по формуле:

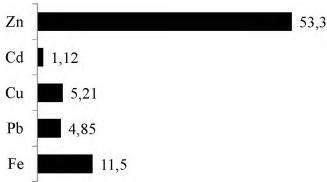
$$K = \frac{Al_2O_3 + CaO + MgO}{TiO_2 + SiO_2} = \frac{15,5 + 8,67 + 0,88}{1,0 + 60.2} = 0,409$$

Нами были отобраны пробы зол Алматинского ТЭЦ-3 для исследования из точек указанные на рис.2. Как видно из рисунка 2, участок золоотвала по сроку эксплуотации делится на высыхающие, полувлажные и с жидкими поверхностями. Отобранные пробы зола1 и 2 производился из участка полувлажного, а также зола 3 и 4 из влажного участка.

Рисунок 2. Точка отбора проб зол Алматинского ТЭЦ-3

Примечание: 1 и 2 - точка отбора проб золы из полувлажного участка западного сектора золоотвала; 3 и 4 - точка отбора проб золы из участкас жидкими поверхностями восточного сектора золоотвала.

Нами были определены количество железо (Fe) в золах отвалов Алматинского ТЭЦ-3. Как известно химически чистое железо при нормальной температуре стойко к окислению на воздухе и в воде. Как видно из таблицы 2, содержание железа в составе золы отобранные из участков 1 и 2 (зола 1 и 2, табл.2) достигают 20,0 и 13,92 мг/кг соответственно, что составляют примерно на два раза больше, чем количество железа в составе золы из участка 3 и 4 (зола 3 и 4, табл.2) — 9,11 и 7,59 мг/кг соответственно. В целом средное количество железа в составе золы участках 1-4 достигает 11,5 мг/кг (рис.3).


Таблица 2. Содержание тяжелых металлов в составе золы Алматинского ТЭЦ-3

Объект	Элементы (мг/кг)								
Cobert	Fe	Pb	Cu Cd		Zn				
Зола 1	20,0	4,57	6,4	0,10	120,0				
Зола 2	13,92	5,14	5,47	0,20	41,33				
Зола 3	9,11	3,14	4,23	0,08	40,0				
Зола 4	7,59	5,42	4,95	0,12	65,33				

Следующим элементом определения являлся свинец (Pb). Как известно, свинец мало химически активен. На воздухе свинец довольно быстро покрывается тонькой пленкой оксида, предохраняющей его от дальнейщего окисления. Определение свинца в составе зола Алматинского ТЭЦ-3 показала, что на участке 1 и 2 (зола 1 и 2, табл.2) их количество достигает 4,57 и 5,14 мг/кг соответственно. Аналогичного результата по содержанию свинца показывает в золе из участка 3 и 4, (зола 3 и 4, табл.2). Содержание свинца в золе этого участка составляет 3,14 и 5,42 мг/кг соответственно. Среднее количество свинца в золе Алматинского ТЭЦ-3 составляет 4,85 мг/кг (рис.3).

В составе золы обнаружили медь (Cu). Медь является малоактивным металлом. В нормальных условиях на сухом воздухе её окисления не происходит. На влажном воздухе происходит окисление с образованием карбоната меди (II). Содержание количество меди (Cu) в золе Алматинского ТЭЦ-3 приблизительно такого же количества, что и алюминий, а именно, на участках 1,2,3 и 4 (рис.2), (зола 1,2,3 и 4, табл.2) составляют 6.4, 5.47, 4.23 и 4.95 мг/кг соответственно. В среднем количество меди в Алматинском ТЭЦ-3 доходит до 5,21 мг/кг зола (рис.3).

Изучение состава зола Алматинского ТЭЦ-3 указывает то, что из перечисленных химических элементов в наименьших количествах встречается кадмий (Cd). Химическая характеристика кадмия по своим консистенциям представляет собой серебристое твердое вещество с голубоватым блеском на свежей поверхности, мягкий, ковкий, тягучий металл. Содержание количество кадмия (Cd) в золе Алматинского ТЭЦ-3 на участках 1,2,3 и 4 (рис.2), (зола 1,2,3 и 4, табл.2) составляют 0.10, 0.20, 0.08 и 0.12 мг/кг соответственно. В среднем количество меди в Алматинском ТЭЦ-3 доходит до 1,12 мг/кг зола (рис.3).

Содержание элементов, мг/кг

Рисунок 3. Усредненные показатели содержания тяжелых металлов в золе Алматинского ТЭЦ-3

Зола Алматинского ТЭЦ-3 богата элементом цинка (Zn). По своей химической природе металлический цинк обладает характерным голубоватым блеском на свежей поверхности, который он быстро теряет во влажном воздухе. Содержание цинка в золе Алматинского ТЭЦ-3 на участках на участках 1,2,3 и 4 (рис.2), (зола 1,2,3 и 4, табл.2) составляют 120.0, 41.33, 40.0, и 65.33 мг/кг соответственно.

Выводы: Общие содержания тяжелых металлов в золах отвалов Алматинского ТЭЦ-3 выглядет таким образом: железо -11.5 мг/кг (7,59-20,0), свинец -4.85 (3,14-5,42), медь -5.21 (4,23-6,4), кадмий -0.12 (0,08-0,20), цинк -53.3 (40,0-120,0) мг/кг. В данном случае наблюдаем превышение предела ПДК некоторых химических элементов. Например, перенасышенность зола медью превышает на 1,7 раза, тогда как цинк превосходит допустимую концентрацию ПДК на 2,3 раза больше. Вместе с тем, количество свинца и кадмия соответствуют нормам ПДК.

Список литературы

- 1. Делицын Л.М., Власов А.С. Возможности использования золы Черепетской ТЭС // Теплоэнергетика. 2010. № 4. С. 49-52.
- 2. Гаврилов Е.И. Топливно транспортное хозяйство и золошлакоудаление на ТЭС: Учеб. пособие для вузов. М.: Энергоатомиздат, 1987. -168 с.
- 3. ГОСТ 10538-87. Топливо твердое. Методы определения химического состава золы. Введ. $01.01.88.-M.,\ 1988.\ -16c.$
- 4. Иванов В.В., Вишня Б.Л., Цылкин Е.Б. Увеличение потребления золошлаков важнейший фактор снижения вредного воздействия ТЭС на окружающую среду // Энергетик. 2010. \mathbb{N} 4. С. 34-36.
- 5. РД 153-34.0-44.220-2000 Топливо твердое и жидкое определение тяжелых металлов (микроэлементов) методом атомно абсорбционной спектрофотометриии. Введ. 01.07.01.-M., 2000.-13c.
- 6. Уфимцев В.М., Капустин Ф.Л., Путилов В.Я. Получение попутной минеральной продукции на тепловых электростанциях// Энергетик. 2010. №5. С. 7-9.