СВОЙСТВА АДСОРБЕНТОВ ИЗ ОТХОДОВ РАСТИТЕЛЬНОГО СЫРЬЯ И ИСПОЛЬЗОВАНИЕ ИХ ДЛЯ УЛАВЛИВНИЯ ГАЗОВЫХ ВЫБРОСОВ

КАМБАРОВА Г.Б., САРЫМСАКОВ Ш.С., ДУЙШОНБАЕВА А.Т., ЭРНИС КЫЗЫ А.

УДК 661.183

В статье изучены свойства адсорбентов, полученных из отходов местного растительного сырья и показана возможность их применения для очистки вредных газовых выбросов.

Одним из путей утилизации углеродсодержащих твердых отходов является их переработка в адсорбенты, потребность в которых в мире постоянно растет. Учитывая наличие богатейшей сырьевой базы и огромную потребность в сорбентах, а также высокую цену углеродных сорбентов на мировом рынке не трудно оценить экономическую целесообразность разработки новых эффективных процессов переработки древесины и древесных отходов в углеродные сорбенты для различных направлений использования.

При подборе исходного сырья для производства адсорбентов большое значение придают их химическому составу, так как наличие в исходном сырье высокого содержания золы снижает предельный адсорбционный объем пор в готовом продукте, а также сужает область их применения в связи с наличием вредных компонентов в минеральной составляющей в готовом адсорбенте. Высокий выход летучих веществ в исходном сырье способствует раскрытию различных пор за счет удаления битумов, сажистых, смолистых и других легко летучих соединений.

Поэтому исследование технических характеристик и химического состава выбранных объектов исследования является необходимым этапом в изучении нового сырья. Для получения углеродных адсорбентов использовали местное растительное сырье – стебли Шыралжына, стебли хлопчатника и скорлупу ореха [1-4]. В качестве сопоставимого сырья в работе приведены физико – химические характеристики древесины березы, используемой для промышленного получения активированных углей марки БАУ [5]. Исходное сырье является дешевым, возобновляемым ресурсом (отходы сельскохозяйственного производства) и характеризуется низким содержанием золы, что делает их привлекательными для получения адсорбентов. Характеристики и химический состав исходного сырья представлены в табл. 1.

Таблица 1. Характеристика исходного сырья.

_	Технический		_	Элементный				
Сырье	анализ ,%			состав, %daf				
	W^a	A^d	V ^{daf}	С	Н	N	S	O
Стебли	7,41	1,56	77,81	50,65	6,25	0,75	-	42,35
Шыралжына								
Стебли	8,29	5,12	82,22	50,19	6,70	0,16	-	42,95
хлопчатника								
Скорлупа	7,93	1,30	77,58	51,17	6,37	0,47	0,08	41,91
opexa								
Береза	7,95	1,26	77,91	49,61	6,32	1,12	0,09	42,76

Из данных таблицы видно, что сырье является малозольным, содержание летучих веществ высокое, что будет способствовать образованию различных пор. Сырье низко азотистое и малосернистое, что является благоприятным фактором при переработке, так как большая их часть при термообработке переходит в газообразные продукты и отрицательно сказывается на экологии процесса. Все показатели исследуемого сырья находятся в пределах их содержания в древесине березы, из которой получают активированные угли марки БАУ. Поэтому они вполне удовлетворяют требованиям, предъявляемым к сырью для получения углеродных адсорбентов.

Для получения адсорбентов сырье вначале подвергают пиролизу, а затем активируют водяным паром при температуре 820 $^{\circ}$ С. Первой стадией термической обработки при получении адсорбентов (активированных углей) из растительного сырья является пиролиз исходного сырья с получением высокообуглероженного карбонизата (уголь — сырец). Пиролиз проводили в двух температурных режимах — 500° С и 800° С. Полученный карбонизат подвергали активации водяным паром при температуре 820° С в течении 20 минут. Результаты активации карбонизатов представлены в табл.2.

Таблица 2. Результаты активации карбонизатов

Адсорбент	T, °C	Время, мин	емя, мин Выход АУ, %		Зольность
				обгара, %	адсорбента, %
Из СШ:					
500° ℂ	820	20	25,0	40	4,67
800°C	820	20	27,0	40	10,72
Из СХ:					
500°C	820	20	18,6	22	12,24
800° ℂ	820	20	20,9	30	10,64
Из СО:					
500°€	820	20	49,2	53	4,50
800° €	820	20	54,0	44	3,10

(СШ – стебли Шыралжына, СХ – стебли хлопчатника, СО – скорлупа ореха)

Наиболее высокий выход адсорбента из карбонизатов скорлупы ореха (более 50%) при степени обгара 45-55%. Зольность адсорбентов увеличивается по сравнению с исходными пробами, но находится в пределах допустимых норм для активированных углей.

Для определения возможности применения адсорбентов, полученных из карбонизатов при температурах $500\,^{\circ}$ С и $800\,^{\circ}$ С, были изучены их адсорбционные свойства в сравнении с промышленным активированным углем марки БАУ. Характеристики пористой структуры и адсорбционные свойства адсорбентов приведены в таблице 3.

Таблица 3. Характеристика активированных углей

Адсорбент	Насыпная плотность, Гр/см ³	Объем пор, см ³ /гр	Адсорб. активность по йоду,%		
		VΣ	$W_{\rm s}$	V _{ма}	
Из СШ:					
500° C	0,300	1,400	0,424	0,976	59,10
800°C	0,309	1,770	0,434	1,336	62,80
Из СХ:					
500° ℂ	0,303	1,952	0,062	1,890	41,20
800° ℂ	0,282	2,339	0,087	2,252	45,30
Из СО:					
500° ℂ	0,290	1,420	0,422	0,992	64,50
800°C	0,307	1,500	0,434	1,066	69,20
АУ - БАУ	0,240	1,600	0,300	1,300	60,00

Лучшей адсорбционной способностью, соответствующей промышленным активированным углям, обладают адсорбенты, полученные из стеблей Шыралжына и скорлупы ореха. Адсорбенты из стеблей хлопчатника имеют активность выше 30%, что соответствует промышленным активированным углям марки ДАК, которые применяются для очистки питьевой воды и паровых конденсатов. Изучение пористой структуры адсорбентов показало, что суммарный объем пор увеличивается с ростом температуры пиролиза и в них в основном присутствуют макропоры.

На полученных углеродных адсорбентах определяли возможность улавливания возможных вредных газовых выбросов. Адсорбционная способность активированных углей, полученных из биомассы растительного сырья, представлены в таблице 4.

Таблица 4. Адсорбционная способность АУ по отношению к газам

тионици и профиционици способность из по отношению и тизим							
Адсорбент	Сl₂, г/л	Вг₂, г/л	НВr, г/л	SO ₂ , г/л	Н₂Ѕ, г/л		
Из СШ:							
500°C	1,37/0,43	1,26/0,2	32,36/8,95	0,10/0,04	0,02/0,01		
800° ℂ	1,76/0,56	3,58/0,50	35,18/9,73	8,99/3,15	0,06/0,04		
Из СХ:							
500° C	5,69/1,80	3,12/0,44	-	20,23/7,08	-		

800°C	12,45/3,93	4,03/0,56	-	25,91/9,07	-
Из СО:					
500°€	1,15/0,36	1,03/0,14	27,60/7,63	1,43/0,50	0,04/0,02
800°C	1,72/0,54	2,34/0,33	29,15/8,06	2,06/0,72	0,07/0,05
АУ - БАУ	21,73/6,9	9,16/1,28	26,79/7,50	0,13/0,05	-

На основании экспериментальных данных можно сделать вывод о том, что адсорбенты, полученные из местного растительного сырья, могут применятся для улавливания газовых выбросов. По отношению к некоторым газам полученные углеродные адсорбенты обладают большей адсорбционной способностью, чем промышленный образец активированного угля марки БАУ.

Литература:

- 1. Камбарова Г.Б., Байзакова Г.Л., Сарымсаков Ш., Сартова К.А. Пиролиз стелей Шыралжына (Artemisia Dracunculus). Вестник КГПУ им. Арабаева, серия 1, вып. 2, Бишкек 2004.
- 2. Камбарова Г.Б., Сарымсаков Ш., Сартова К.А. исследования отходов хлопчатника Gossypiyim в качестве сырья для получения химических продуктов. Тезисы докладов Международной научной конференции. Санкт Петербург 2010.
- 3. Камбарова Г.Б., Сарымсаков Ш., Сартова К.А. получение углеродных адсорбентов из отходов хлопчатника. Вестник КПУ им. Арабаева №2. бишкек 2011.
- 4. Камбарова Г.Б. состав и свойство активированных углей, полученных из орехового дерева. Наука и новые технологии. №4. Бишкек 2011.
- 5. Активные угли. Эластичные сорбенты. Катализаторы. Осушители. Химические поглотители: каталог. Черкассы: НИИТЭХим. 1996. 124с.