
УДК 004.354.4:512.643:004.388

КОДИРОВКА МАТРИЦ УМНОЖЕНИЯ С ИСПОЛЬЗОВАНИЕМ НОВЫХ УСТРОЙСТВ FPGA
(ПЛИС)

“ENCRYPTION OF MATRIX MULTIPLICATION USING NEWER FPGA DEVICES”

PhD Candidate: Haider I Mohsin, Prof. J.I.Batyrkanov
Kyrgyz state Technical University

liveofficel 2(a)gmaiL com
1. Abstract

Matrix multiplication is a fundamental buildingblock for many applications includingimage processing,
coding, and digital signalprocessing. In this project weintended to give two ways of improvement of Encryption
efficientmethodology for implementing integer and floating point matrixmultiplication using FPGAs. The archi­
tecture presented is based on new FPGA features and provides a significant reductionin total computation time and
resource utilization over previous solutions.

2. Introduction
Many applications like image pro­

cessing, coding, and digital signal processing
have matrix multiplication operation as a funda­
mental one. Processors implement the matrixmul-

3
tiplicationin 0(n ^running time. To reduce this
complexity, many parallel methods have been
developed [2] [3] [4]. While these parallel pro­
cessing methods havereduced the total computa­
tion time, they are applicable only for small ma­
trix dimensions since they require significant de­
vice resources. Recent advancesinFieldProgram-
mable Gate Array (FPGA) technology gave new
possibilities for implementation ofmore efficient
parallel matrix multiplication algorithms.

3. Matrix Multiplication Methods
Several methods have been explored to

decrease the algorithmic complexity of the matrix
multiplication operation [2] [3] [4]. Although
theseprior works have systematically improved the
resource utilization and operating frequency over
prior designs, their algorithms all require inter­

communication between the processing elements
(PE’s). While this improves the latency of the sys­
tem, it is not delay or resourceoptimal due to data
sharing between the PE’s. In this project we will
use the method that performs matrix multiplication
with PE’s that operate in isolation fromeach other
[1].

New advances in FPGA technology
allow moreefficient implementation of integer
and floating-point multiplication and addition
over previous generations ofdevices. For ex­
ample, theXilinx Virtex-4 family introduced
the dedicated DSP-48 block which consists of
a 18 x l8 multiplier coupled with a 48-bit adder
/ accumulator [7]. Inaddition, the Virtex-4
family includes dedicated FIFOs which allow
efficient implementation of both synchronous
and asynchronous FIFOs without requiring ad­
ditional logic resources.

3.1 The parallel model
In order to optimize FPGA architecture

resource use, the data frominput matrices .4 and В

114 АВТОМ АТИЗАЦИЯМ УПРАВЛЕНИЕ, МЕХАТРОНИКА И РОБОТОТЕХНИКА

Известия КГТУ им. И.Раззакова 31/2014

should be re-used. Optimal data re-use occurs
when data is read frommemory for matrices I and
В exactly once. By simultaneously reading one
columnof matrix A and one row of matrix В , and
performing all multiply operations based on those

values before additional memory reads, optimal
data re-use occurs. Data read in this sequence al­
lows one partial product tennof every element in
output matrix Cto be computed per clock cy-
cle.This process is shown in Figure 1.

Ав

K*
т

X|

cycle 1

(в „ В 1а .. I , . С ц С 1г

В „ В и . в ;п
=

C,„

К B nz ~ g™

L ' 1
Cycle ncycle n

Figure 1: Parallel Matrix Multiplication Sequence

3.1.1 Multiplier Array Architecture

In order to meet the memory read requirements, an array structure of PE’s is required. Figure

2 shows the array structure requiredwheninputmatrix4 lias / elements.and В has m elements.

Figure 2: Matrix Multiplier Array

Inthisarrayconfiguration/»/ product terms
are produced each clock cycle fromthe/+ m matrix
elements. In the sequel, we assume that m = /, al­
lowing for a regular multiplier array structure. In
all but the smallest of matrix dimensions n where m
= n. it is assumed that m = n/k where к is an integer.

This array configuration allows the algorithinto be
applied to matrices of non- square dimension.

3.1.2 Processing Element (PE) Structure

The structure of the PE is shown in Figure 3.

PE FIFO

Ш Ь О

Figure 3: Processing Element (PE) structure

The PE structure consists of one input each
from matrix. I and 5, a multiplier accumulator
(MAC), and a result FIFO. The multiplier latency is
denoted as w hile that of the adder and FIFO are
denoted as «fland a/respectively. The inputs from
matrices^ and 5, containing one word each per clock

cycle, are implemented using dedicated routes-
fromtlieBlockRaminemoryassociated with the multi­
plier. By having dedicated memory connections for
each PE the routing and resource delay penalty is
eliminated.

АВТОМАТИЗАЦИЯ И УПРАВЛЕНИЕ, МЕХАТРОИИКА И РОБОТОТЕХНИКА 115

Известия КГТУ им. И.Раззакова 31/2014

During the computation ofoutput matrix el-
ementQ/the product term4цс /i/^must be available at
the output of the adder duringthe same clock cycle as
the product ternx 1 /(/v-+1)■ /̂ СЛ'+1)/is available fromthe
multiplier. The final product tсrmrcqui res«ao П a t с n -
cyin the adderbefore it is stored in memory.

3.1.3 Memory Structure
The memory hierarchy is organized in the

following way: input matrices^ and B, and output
matrix С FIFO storage. Each matrix is partitioned
intom BlockRambanks. This structure has one bank
of A and В feeding one PE array row and column re­
spectively. Each bank ofVlstorcs/i- = (n/m) words of
each column in. I. for every row of A Similar, each
bank of В stores к ={n/m) words of each row in B, for
every column ofS. Because the data remains in FIFO
memory only until used, additional data can be load­
ed fromextemal memory to accommodate array di­
mensions larger than internal storage would allow.
Each BlockRamhas a depths based on the width of
the internal data. To determine the number of Block-
Rams required per matrix word, the input data word
width (Wmat) is divided by the BlockRamwidth
(Wbram)&nd rounded up. This is multiplied by the

2
number of words in thematrix n and divided by the
FIFO depth d. The total number of input BlockRams
required for matrices A and В are as presented in
Equation (1).

InputBlockRams = 2 ((Wmat/Wbram) (n2)/d) (1)
The number of PE BlockRams required is

the width of the input word (fr/J/-.)dividcd by the
Block-Ram(fr/)ra/>/)\vidth and rounded up. Note that
the datawidth at the output of the matrix MAC opera­
tion is wider than that ofthe input matrices, and will
thus require more BlockRams per word. This value

2
ismultiplied by the number ofPE words (k)and di­
vided by the FIFO depths. The total number of
BlockRams required to storetheresultisgiveninEqua-
tion(2).

PE BlockRams = (W pE ^ bram) (k2/d) (2)

3.2 System Latency and Computational Time

3.2.1 System Latency

In the analyzed method, we have k= n/m,
2

which requires к clock cycles to read the input data
which produces the product terms for one column
of4multiplied by one row of B. With n rows and n
columns in method’s design, and each column of4

2
and В read simultaneously, there are nk
clock cycles required to read the input matrices from

2
memory. This means that after \(n - 1)k + 1]

clock cyclesthe elements A i«and Bn i w hich are re­
quired for the final product termof C iwwill be read
frommemory. Given that the multiplier latency
is«,„and the adder latency is aa,the first result
C iwwill be presented to the PE FIFO after \(n -

2
1)k + 1]+am+ «flclock cycles. Because the PE FIFO
also serves as the output matrixC storage, no addi­
tional clock cyclesare requiredto store the result. The
latency formula of thesystemis given in Equation (3).

[(n — 1)k + l\+ a m + aa(3)

3.2.2 Total Computational Time

The input matrix elements .lw ,and Bnnre­
quired for the final product termofCwware read from-

2
mcmoryaftcm/i clock cycles. Given the multiplier la­
tency of«,„and the adder latency ofaa, the final result
Cwwwill be written tothe PE FIFO af-

2
tem/i’ +«„/+«дс1оск cycles. Again, with no addition
time required for storing resultCwwto memory, the to­
tal computation time is given in Equation (4).

2
Total Computation Time = nk + am + а.ц(4)

4. Proposed Improvement

By analyzing the described method for par­
allel matrix multiplication, we suggest two strategies
that can improve the performance of the algorithm.
Since the size of the numbers that are added in the PE
unit is large, we could use a high-performance car-
rylook-ahead adder. This modificationwill decrease
the value ofa,respectively decreasing the system la­
tency (Ecuation 4). Another improvement could be
usingpipelining in multiplication operation ofthe PE
unit. By using a pipelined multiplier, we will de­
crease the amvalue fromEquation 4, which will also
improve the systemlatency.

4.1 Carry - LookAhead Adder

In a carry - lookahead adder, all the carry
outputs are calculated at once by specialized
lookahead logic. The result is that instead of having
to wait for the output to "ripple" up to the most sig­
nificant bit, the entire result can becomputed with
significantly less delay.

While we need to use large adders, we use
the carry lookaheadmethod on the outputs of smaller
adders (which themselvesmay be carry lookahead ad-
ders)to build up a larger result. For example, a 16-bit
adder may be implemented as four 4-bit adders, con­
nected in a carry lookahead configuration.

116 АВТОМАТИЗАЦИЯ И УПРАВЛЕНИЕ, МЕХАТРОИИКА И РОБОТОТЕХНИКА

