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1. Abstract

Matrix multiplication is a fundamental buildingblock for many applications includingimage processing, 
coding, and digital signalprocessing. In this project weintended to give two ways of improvement of Encryption 
efficientmethodology for implementing integer and floating point matrixmultiplication using FPGAs. The archi­
tecture presented is based on new FPGA features and provides a significant reductionin total computation time and 
resource utilization over previous solutions.

2. Introduction
Many applications like image pro­

cessing, coding, and digital signal processing 
have matrix multiplication operation as a funda­
mental one. Processors implement the matrixmul-

3
tiplicationin 0(n  ^running time. To reduce this 
complexity, many parallel methods have been 
developed [2] [3] [4]. While these parallel pro­
cessing methods havereduced the total computa­
tion time, they are applicable only for small ma­
trix dimensions since they require significant de­
vice resources. Recent advancesinFieldProgram- 
mable Gate Array (FPGA) technology gave new 
possibilities for implementation ofmore efficient 
parallel matrix multiplication algorithms.

3. Matrix Multiplication Methods
Several methods have been explored to 

decrease the algorithmic complexity of the matrix 
multiplication operation [2] [3] [4]. Although 
theseprior works have systematically improved the 
resource utilization and operating frequency over 
prior designs, their algorithms all require inter­

communication between the processing elements 
(PE’s). While this improves the latency of the sys­
tem, it is not delay or resourceoptimal due to data 
sharing between the PE’s. In this project we will 
use the method that performs matrix multiplication 
with PE’s that operate in isolation fromeach other 
[1].

New advances in FPGA technology 
allow moreefficient implementation of integer 
and floating-point multiplication and addition 
over previous generations ofdevices. For ex­
ample, theXilinx Virtex-4 family introduced 
the dedicated DSP-48 block which consists of 
a 18 x l8  multiplier coupled with a 48-bit adder 
/ accumulator [7]. Inaddition, the Virtex-4 
family includes dedicated FIFOs which allow 
efficient implementation of both synchronous 
and asynchronous FIFOs without requiring ad­
ditional logic resources.

3.1 The parallel model
In order to optimize FPGA architecture 

resource use, the data frominput matrices .4 and В
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should be re-used. Optimal data re-use occurs 
when data is read frommemory for matrices I and 
В exactly once. By simultaneously reading one 
columnof matrix A and one row of matrix В , and 
performing all multiply operations based on those

values before additional memory reads, optimal 
data re-use occurs. Data read in this sequence al­
lows one partial product tennof every element in 
output matrix Cto be computed per clock cy- 
cle.This process is shown in Figure 1.
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Figure 1: Parallel Matrix Multiplication Sequence

3.1.1 Multiplier Array Architecture

In order to meet the memory read requirements, an array structure of PE’s is required. Figure 

2 shows the array structure requiredwheninputmatrix4 lias / elements.and В has m elements.

Figure 2: Matrix Multiplier Array

Inthisarrayconfiguration/»/ product terms 
are produced each clock cycle fromthe/+ m matrix 
elements. In the sequel, we assume that m = /, al­
lowing for a regular multiplier array structure. In 
all but the smallest of matrix dimensions n where m 
= n. it is assumed that m = n/k where к is an integer.

This array configuration allows the algorithinto be 
applied to matrices of non- square dimension.

3.1.2 Processing Element (PE) Structure

The structure of the PE is shown in Figure 3.
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Figure 3: Processing Element (PE) structure

The PE structure consists of one input each 
from matrix. I and 5, a multiplier accumulator 
(MAC), and a result FIFO. The multiplier latency is 
denoted as w hile that of the adder and FIFO are 
denoted as «fland a/respectively. The inputs from 
matrices^ and 5, containing one word each per clock

cycle, are implemented using dedicated routes- 
fromtlieBlockRaminemoryassociated with the multi­
plier. By having dedicated memory connections for 
each PE the routing and resource delay penalty is 
eliminated.
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During the computation ofoutput matrix el- 
ementQ/the product term4цс /i/^must be available at 
the output of the adder duringthe same clock cycle as 
the product ternx 1 /(/v-+1 )■ /̂ СЛ'+1 )/is available fromthe 
multiplier. The final product tсrmrcqui res«ao П a t с n - 
cyin the adderbefore it is stored in memory.

3.1.3 Memory Structure
The memory hierarchy is organized in the 

following way: input matrices^ and B, and output 
matrix С FIFO storage. Each matrix is partitioned 
intom BlockRambanks. This structure has one bank 
of A and В feeding one PE array row and column re­
spectively. Each bank ofVlstorcs/i- = (n/m) words of 
each column in. I. for every row of A  Similar, each 
bank of В stores к ={n/m) words of each row in B, for 
every column ofS. Because the data remains in FIFO 
memory only until used, additional data can be load­
ed fromextemal memory to accommodate array di­
mensions larger than internal storage would allow. 
Each BlockRamhas a depths based on the width of 
the internal data. To determine the number of Block- 
Rams required per matrix word, the input data word 
width (Wmat) is divided by the BlockRamwidth 
(Wbram)&nd rounded up. This is multiplied by the

2
number of words in thematrix n and divided by the 
FIFO depth d. The total number of input BlockRams 
required for matrices A and В are as presented in 
Equation (1).

InputBlockRams = 2 ((Wmat/Wbram) (n2)/d) (1) 
The number of PE BlockRams required is 

the width of the input word (fr/J/-.)dividcd by the 
Block-Ram(fr/)ra/>/)\vidth and rounded up. Note that 
the datawidth at the output of the matrix MAC opera­
tion is wider than that ofthe input matrices, and will 
thus require more BlockRams per word. This value

2
ismultiplied by the number ofPE words (k )and di­
vided by the FIFO depths. The total number of 
BlockRams required to storetheresultisgiveninEqua- 
tion(2).

PE BlockRams = (W pE ^ bram ) (k2/d) (2)

3.2 System Latency and Computational Time

3.2.1 System Latency

In the analyzed method, we have k= n/m,
2

which requires к clock cycles to read the input data 
which produces the product terms for one column 
of4multiplied by one row of B. With n rows and n 
columns in method’s design, and each column of4

2
and В read simultaneously, there are nk
clock cycles required to read the input matrices from

2
memory. This means that after \(n -  1 )k + 1]

clock cyclesthe elements A i«and Bn i w hich are re­
quired for the final product termof C iwwill be read 
frommemory. Given that the multiplier latency 
is«,„and the adder latency is aa,the first result 
C iwwill be presented to the PE FIFO after \(n -  

2
1 )k + 1 ]+am+ «flclock cycles. Because the PE FIFO 
also serves as the output matrixC storage, no addi­
tional clock cyclesare requiredto store the result. The 
latency formula of thesystemis given in Equation (3).

[(n — 1 )k + l\+ a m + aa(3)

3.2.2 Total Computational Time

The input matrix elements .lw ,and Bnnre­
quired for the final product termofCwware read from- 

2
mcmoryaftcm/i clock cycles. Given the multiplier la­
tency of«,„and the adder latency ofaa, the final result 
Cwwwill be written tothe PE FIFO af- 

2
tem/i’ +«„/+«дс1оск cycles. Again, with no addition 
time required for storing resultCwwto memory, the to­
tal computation time is given in Equation (4).

2
Total Computation Time =  nk +  am + а.ц(4)

4. Proposed Improvement

By analyzing the described method for par­
allel matrix multiplication, we suggest two strategies 
that can improve the performance of the algorithm. 
Since the size of the numbers that are added in the PE 
unit is large, we could use a high-performance car- 
rylook-ahead adder. This modificationwill decrease 
the value ofa,respectively decreasing the system la­
tency (Ecuation 4). Another improvement could be 
usingpipelining in multiplication operation ofthe PE 
unit. By using a pipelined multiplier, we will de­
crease the amvalue fromEquation 4, which will also 
improve the systemlatency.

4.1 Carry -  LookAhead Adder

In a carry -  lookahead adder, all the carry 
outputs are calculated at once by specialized 
lookahead logic. The result is that instead of having 
to wait for the output to "ripple" up to the most sig­
nificant bit, the entire result can becomputed with 
significantly less delay.

While we need to use large adders, we use 
the carry lookaheadmethod on the outputs of smaller 
adders (which themselvesmay be carry lookahead ad- 
ders)to build up a larger result. For example, a 16-bit 
adder may be implemented as four 4-bit adders, con­
nected in a carry lookahead configuration.
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