YIAK 004.354.4:512.643:004.388

KOJAUPOBKA MATPUI] YMHOKEHUA C HCNOJIb30BAHAEM HOBBIX YCTPOMCTB FPGA
(ILTHC)
“ENCRYPTION OF MATRIX MULTIPLICATION USING NEWER FPGA DEVICES”

PhD Candidate: Haider I Mohsin, Prof. J.I.Batyrkanov
Kyrgyz state Technical University
liveofficel 2@gmail.com
1. Abstract
Matrix multiplication is a fundamental buildingblock for many applications includingimage processing,
coding, and digital signalprocessing. In this project weintended to give two ways of improvement of Encryption
efficientmethodology for implementing integer and floating point matrixmultiplication using FPGAs. The archi-
tecture presented is based on new FPGA features and provides a significant reductionin total computation time and
resource utilization over previous solutions.

2, Introduction communication between the processing elements
Many applications like image pro- (PE’s). While this improves the latency of the sys-
cessing, coding, and digital signal processing tem, it is not delay or resourceoptimal due to data
have matrix multiplication operation as a funda- sharing between the PE’s. In this project we will
mental one. Processors implement the matrixmul- use the method that performs matrix multiplication

with PE’s that operate in isolation fromeach other

[1].

tiplicationin O(n3)running time. To reduce this
complexity, many parallel methods have been
developed [2] [3] [4]. While these parallel pro-
cessing methods havereduced the total computa-
tion time, they are applicable only for small ma-
trix dimensions since they require significant de-
vice resources. Recent advancesinFieldProgram-
mable Gate Array (FPGA) technology gave new
possibilities for implementation ofmore efficient
parallel matrix multiplication algorithms.

New advances in FPGA technology
allow moreefficient implementation of integer
and floating-point multiplication and addition
over previous generations ofdevices. For ex-
ample, theXilinx Virtex-4 family introduced
the dedicated DSP-48 block which consists of
al8 x18 multiplier coupled with a 48-bit adder
/ accumulator [7]. Inaddition, the Virtex-4
family includes dedicated FIFOs which allow
efficient implementation of both synchronous
and asynchronous FIFOs without requiring ad-
ditional logic resources.

3. Matrix Multiplication Methods
Several methods have been explored to
decrease the algorithmic complexity of the matrix
multiplication operation [2] [3] [4]. Although
theseprior works have systematically improved the
resource utilization and operating frequency over
prior designs, their algorithms all require inter-

3.1 The parallel model
In order to optimize FPGA architecture
resource use, the data frominput matrices 4 and B

114 ABTOMATH3ALHA H YIIPAB/IEHHE, MEXATPOHHKA H POBOTOTEXHHKA



Hisectust KI'TY nm. U.Pa33axosa 31/2014

should be re-used. Optimal data re-use occurs
when data is read frommemory for matrices4 and
B exactly once. By simultancously reading one
columnof matrix 4 and one row of matrix B, and
performing all multiply operations based on those

Cyclen

values before additional memory reads, optimal
data re-use occurs. Data read in this sequence al-
lows one partial product termof every element in
output matrix Cto be computed per clock cy-
cle.This process is shown in Figure 1.

B, - B, |CuCsn - Cu
E;:,: F'_ C, C " l::q

al B(\,: Bm Lf,', C 2 I"
Cycle n

Figure 1: Parallel Matrix Multiplication Sequence
3.1.1 Multiplier Array Architecture
In order to meet the memory read requirements, an array structure of PE’s is required. Figure

2 shows the array structure requiredwheninputmatrix4 has / elements,and B has m elements.

Figure 2: Matrix Multiplier Array

Inthisarrayconfiguration,/m product terms
are produced each clock cycle fromthe/+ m matrix
elements. In the sequel, we assume that m =/, al-
lowing for a regular multiplier array structure. In
all but the smallest of matrix dimensions n where m
= n, it is assumed that m = n/k where k is an integer.

R RAM : RAM
B, 8 = | g,
RLAM .
Ay I I l
-+ PE,; | + PE;;| — | PFE,,
RAM : : :
A, ] ] l
|‘ | PE3y | 1| PEx | = | PEm
RAM 'D' ﬂ ﬂ
A b . }
— PE; | | PE,| =} S{PE,,

This array configuration allows the algorithmto be
applied to matrices of non- square dimension.

3.1.2 Processing Element (PE) Structure

The structure of the PE is shown in Figure 3.

[= K

g

PE ./ DSP-48

(%) () E
Y .
— |-
ey
- oL — L= - = -

Figure 3: Proces

The PE structure consists of one input cach
from matrix4 and B, a multiplier accumulator
(MAC), and a result FIFO. The multiplier latency is
denoted as aj;, while that of the adder and FIFO are
denoted as agand afrespectively. The inputs from
matrices4 and B, containing one word each per clock

sing Element (PE) structure

cycle, are implemented using dedicated routes-
fromtheBlockRammemoryassociated with the nulti-
plier. By having dedicated memory connections for
each PE the routing and resource delay penalty is
eliminated.

ABTOMATH3ALHA H YIIPABIEHHE, MEXATPOHHKA H POBOTOTEXHHKA

115



H3secrust KI'TY nm. U.Pa33axosa 31/2014

During the computation ofoutput matrix el-
ementCjjthe product term4 i Bkjmust be available at
the output of the adder duringthe same clock cycle as
the product termA;(k+1) B(k+1)iis available fromthe
multiplier. The final product termrequiresagoflaten-
cyin the adderbefore it is stored in memory.

3.1.3  Memory Structure

The memory hierarchy is organized in the
following way: input matricesA and B, and output
matrix C FIFO storage. Each matrix is partitioned
intom BlockRambanks. This structure has one bank
of 4 and B feeding one PE array row and column re-
spectively. Each bank of Astoresk = (n/m) words of
each column in 4, for every row of 4. Similar, each
bank of B stores k =(n/m) words of each row in B, for
every column of B. Because the data remains in FIFO
memory only until used, additional data can be load-
ed fromexternal memory to accommodate array di-
mensions larger than internal storage would allow.
Each BlockRambhas a depthd based on the width of
the internal data. To determine the number of Block-
Rams required per matrix word, the input data word
width (Wipqay) is divided by the BlockRamwidth
(Whram)and rounded up. This is multiplied by the

number of words in thematrix nzand divided by the
FIFO depth 4. The total number of input BlockRams
required for matrices 4 and B are as presented in
Equation (1).

InputBlockRams =2  ((Wmat/'Whram) (nZ)/d) 1)
The number of PE BlockRams required is

the width of the input word (/Wpg)divided by the

Block-Ram(Wpyqm)width and rounded up. Note that

the datawidth at the output of the matrix MAC opera-
tion is wider than that ofthe input matrices, and will
thus require more BlockRams per word. This value

ismultiplied by the number of PE words (kz)and di-
vided by the FIFO depthd. The total number of
BlockRams required to storetheresultisgiveninEqua-
tion(2).

PEBlockRams = (WPEWhram) (K°/d) )

3.2 System Latency and Computational Time
3.2.1 System Latency

In the analyzed method , we have &= n/m,

which requires kzclock cycles to read the input data
which produces the product terms for one column
ofAmultiplied by one row of B.With n rows and »
columns in method’s design, and each column of4

and B read simultancously, there are nk2
clock cycles required to read the input matrices from

memory. This means that after [(n — 1)k2+ 1]

clock cyclesthe elements 41,and By 1which are re-
quired for the final product termof C1;,will be read
frommemory. Given that the multiplier latency
isaypand the adder latency is aq,the first result
C1uwill be presented to the PE FIFO after [(n —

1)k2+ 1]+am+ agclock cycles. Because the PE FIFO
also serves as the output matrixC storage, no addi-

tional clock cyclesare requiredto store the result. The
latency formula of thesystemis given in Equation (3).

Lin= 11 = DK™+ o+ aa)
3.2.2 Total Computational Time

The input matrix elements 4 nand Bypre-
quired for the final product termofCypare read from-

memoryafternkzclock cycles. Given the multiplier la-
tency ofopand the adder latency ofay, the final result

Cynwill be written tothe PE FIFO af-

ternk2+am+ageloek cycles. Again, with no addition
time required for storing resultCy,to memory, the to-
tal computation time is given in Equation (4).

Total Computation Time = nk2+ amt ag(4)
4. Proposed Improvement

By analyzing the described method for par-
allel matrix multiplication, we suggest two strategics
that can improve the performance of the algorithm.
Since the size of the numbers that are added in the PE
unit is large, we could use a high-performance car-
rylook-ahead adder. This modificationwill decrease
the value ofa,respectively decreasing the system la-
tency (Ecuation 4). Another improvement could be
usingpipelining in multiplication operation ofthe PE
unit. By using a pipelined multiplier, we will de-
crease the amvalue fromEquation 4, which will also
improve the systemlatency.

4.1 Carry — LookAhead Adder

In a carry — lookahead adder, all the carry
outputs are calculated at once by specialized
lookahead logic. The result is that instead of having
to wait for the output to "ripple" up to the most sig-
nificant bit, the entire result can becomputed with
significantly less delay.

While we need to use large adders, we use
the carry lookaheadmethod on the outputs of smaller
adders (which themselvesmay be carry lookahead ad-
ders)to build up a larger result. For example, a 16-bit
adder may be implemented as four 4-bit adders, con-
nected in a carry lookahead configuration.

116 ABTOMATH3ALHA H YIIPAB/IEHHE, MEXATPOHHKA H POBOTOTEXHHKA



Hi3sectust KI'TY nm. U.Pa33axosa 31/2014

4.2 Pipelining

Using a pipelined multiplier can considera-
bly increase the performance ofthe PE unit. Jia Di [5]
proposed a 2-dimensional pipeline gating scheme.
Results show that 16-bit multipliers using this tech-
nique have on average a 66%power saving and laten-
cy reduction of 47% over original design.

5. Conclusions

In this report we analyzed aEncryptioneffi-
cient implementation ofthe matrix multiplication al-
gorithmfor fixed-point and floating-point designs [1].
It’s advantage of recent FPGA technology to signifi-
cantly reduce the resource utilizationand total compu-
tation time over previous methods. Algorithmpro-
posed removes the intercommunication between par-
allel processing elements (PEs), and allows each PE
tooperate inisolation. Also, this algorithmallows the
implementationusingmatrices of arbitrary dimension.

6. References

1. Scott J. Campbell.Sunil P. Khatri, “Resource
and delay efficient matrix multiplication using

newer FPGA devices”, in Great Lakes Symposi-
um on VLSI, 2006

J. Jang, S. Choi, and V. Prasanna, “Area and
time efficient implementations of matrix multi-
plication on FPGAs,,” in Proceedings, IEEFE In-
ternational Conference on FieldProgrammable
Technology(FPT), pp. 93—100, Dec 2002.

A. Amira and F. Bensaali, “An FPGA basedpa-
rameterizablesystemformatrixproduct imple-
mentation,” in/EEE Workshop on Signal Pro-
cessing Systems (SIPS), pp. 7579, Oct 2002.

L. Zhuo and V. Prasanna, “Scalable andmodular
algorithms for floating-point matrix multiplica-
tion on FPGAS,” in Proceedings, International
Parallel and Distributed Processing Symposi-
um, p. 92, Apr 2004.

Jia Di, J.S. Yuan, “Power-aware pipelined mul-
tiplier design based on 2-dimensional pipeline
gating”,inGreat Lakes Symposium on VLSI,
2003.16] http://www.wikipedia.org

Xil-
inx,“XtremeDSPdesignconsiderations.” www.xil
inx.com.




