

УДК 622.73./74(075.8)

МИНЕРАЛЬНЫЙ И ВЕЩЕСТВЕННЫЙ СОСТАВ РУДЫ МЕСТОРОЖДЕНИЯ КУТЕСАЙ -2

АРСТАНБЕКОВ Т.Т., НОГАЕВА К.А., АБЫЛАЕВ У.К. ИГДи ГТ им. У. Асаналиева izvestiva@ktu.aknet.kg

Изучение вещественного состава руд проводилось с использованием методов химического, рентгенофлуоресцентного, рентгеноструктурного и минералогического анализа.

The study of the material composition of ores was performed with the use of methods for chemical, x-ray fluorescent and x-ray diffraction and mineralogical analysis.

Минералогическое изучение проводилось по характерным образцам, полированным и прозрачным шлифам, продуктам обогащения.

Полуколичественный минеральный состав исходных руд (таблица 1) определялся и подсчитывался на усредненных пробах, рассеянных на классы крупности, мм: +2,5; -2,5+1,0-1,0+0,63; -0,63+0,4; -0,4+0,2; -0,2+0,1; -0,1+0,074; -0,074+0,00.

Материал пробы представлен обломками кварц-серицитовых, кварц -хлоритовых метасоматитов с вкрапленностью пирита, при

мазками гидроокислов железа, прожилками кварца и карбонатов. Макроскопически это мелкозернистые породы зеленовато-серого, темно-серого цвета. Текстура пород массивная, структура гранобластовая, гранолепидобластовая. Текстура рудных минералов вкрапленная и прожилково-вкрапленная.

Микроскопическое изучение показало, что основные типы руды состоят из кварца, полевого шпата, хлорита, кальцита, сидерита. [1,2]

Промышленно-ценными рудными минералами являются циртолит, флюоцерит, ксенотим, иттропаризит, иттробастнезит. Из других минералов отмечаются пирит, галенит, молибденит, магнетит, гематит, флюорит, халькопирит, апатит, арсенопирит.[3]

Таблица № 1 Минеральный полуколичественный состав пробы Кутесай -2, %

Минералы	Содержание,	Размер зерен и агрегатов, мм	
		ОТ	до
Кварц	60,0	0,07	2,5
Полевой шпат	19,7	0,05	1,6
Хлорит	5,8	0,01	1,5
Амфибол (актинолит)	3,4	0,025	1,5
Серицит	2,8	0,002	2,0
Кальцит	1,9	0,25	1,5
Флюорит	0,5	0,25	0,8
Флюоцерит	0,01	0,05	0,25
Пирит	0,8	0,02	2,5
Циртолит	0,7	0,01	1,5
Магнетит	1,2	0,06	0,5
Гематит, гидроокислы железа	2,5	0,1	2,5
Галенит	0,3	0,02	1,5
Молибденит	0,04	0,01	2,0
Ксенотим	0,08	0,0025	0,5

Монацит	0,01	0,0025	0,5
Иттробастнезит, иттропаризит	0,01	0,002	1,0
Апатит	0,25	0,01	0,65

Циртолит широко распространен. Он встречается в виде мелкой вкрапленности, гнездовых выделений и тонких прожилков. Ассоциирует с кварцем, хлоритом, серицитом, полевым шпатом, флюоритом. В данном типе руд циртолит является основным минералом, содержащим редкоземельные элементы и иттрий. Минерал представлен сильно трещиноватыми непрозрачными и полупрозрачными кристаллами.

Малакон распространен значительно реже, чем циртолит. Представлен мелкими неправильными угловатыми зернами темно-бурого, грязно бурого цвета. Размер зерен не превышает несколько сотых долей миллиметра. Очень часто такие выделения наблюдаются в виде скоплений и агрегатов, размеры которых достигают нескольких десятых долей миллиметра.

Флюоцерит представлен уплощенными кристаллами призматической формы с размером зерен от сотых до десятых долей миллиметра, встречаются также изометричные разности. Иногда он развивается в виде псевдоморфоз замещения по монациту. Окраска флюоцерита восковожелтая, до светло-желтой, бесцветной.

Ксенотим является основным минералом, содержащим иттриевые земли и иттрий. Встречается в виде самостоятельных выделений. Иногда развивается как вторичный компонент по монациту и находится в тесном микропрорастании с иттрофлюоритом. Наблюдается в виде неправильных и изометричных зерен, реже в сложных сростках. Размер ксенотима не превышает сотых и реже десятых долей миллиметра.

Монацит представлен кристаллами пластинчатого или таблитчатого габитуса желтой окраски. Встречается в виде одиночных кристаллов в кварц-серицитовой породе в ассоциации с кварцем, флюоритом, серицитом. Размер кристаллов колеблется от первых сотых до десятых долей миллиметра. Границы зубчатые, ступенчатые.

Флюорит в кварц-серицитовой породе сопровождает циркониевые и редкоземельные минералы. Окраска минерала преимущественно зеленая и темно-фиолетовая, до черного. Флюорит встречается в тесной ассоциации с серицитом, циртолитом, малаконом, монацитом. Размер выделений колеблется в пределах десятых долей миллиметра. Границы волнистые.

Пирит относиться к группе наиболее распространенных рудных минералов, не имеющих самостоятельного практического значения. Основная масса пирита распространена в виде мелкой рассеянной вкрапленности и маломощных прожилков. Значительно реже он представлен крупными кристаллами, ассоциирующими с халькопиритом, сфалеритом, арсенопиритом, галенитом, кварцем и флюоритом.

Галенит наблюдается в виде мелкой рассеянной вкрапленности, гнездовых выделений и тонких прожилков. Встречается в сростках с пиритом, халькопиритом, гематитом, кварцем, полевым шпатом, серицитом. Размеры зерен варьируют от сотых долей до целых миллиметров.

Молибденит представлен в виде сплошных землистых мелкочешуйчатых масс: отдельных чешуйчатых кристаллов, образующих розетковидные агрегаты с размером отдельных чешуй, достигающими 0,5 в поперечнике, а также крупных чешуйчатых кристаллов, приуроченных к кварцевым прожилкам. Молибденит встречается в ассоциации с кварцем, пиритом, магнетитом, галенитом, кварцем.

Иттропаризит встречается в виде скрытокристаллических агрегатов, состоящих из мелких чешуек и пластинок. Размеры их варьируют от тысячных долей до целых миллиметров. В отдельных случаях он развивается по монациту. Минерал встречается в микропрорастании с другими редкоземельными минералами (иттробастнезитом, иттросинхизитом), поэтому диагностика их крайне затруднена. Иттопаризит встречается в тесном срастании с кварцем, флюоритом, хлоритом, серицитом.

Серицит является широко распространенным минералом. Представлен тонкочешуйчатыми(0,002-0,2мм) агрегатами, реже образует крупные(1-2мм).

Хлорит наблюдается здесь в виде гнездообразных выделений, крупных агрегатов и многочисленных разветвленных прожилков. Иногда хлорит выполняет тонкие трещины в кварце. Хлоритовые образования представлены плотной массой мелкочешуйчатых микроволокнистых агрегатов (0,01-1,5 мм) темно-зеленого цвета.

Кварц один из основных породообразующих минералов. Встречается в виде отделы. изометричных зерен или их агрегатов размеры которых варьирует от сотых долей до целых миллиметров в диаметре. По трещинам кварц замещается серицитом, хлоритом и кальцитом.

Кальцит наблюдается в виде таблитчатых, пластинчатых и хорошо образованных ромбоэдрических кристаллов размером от сотых долей до целых миллиметров в поперечнике.

Сидерит наблюдается в виде прожилков и в виде неправильной вкрапленности в ассоциации с сульфидами кварцем, хлоритом и серицитом. Цвет его темно-бурый, коричневый. Размеры варьируют от сотых долей до целых миллиметров.

Полевой шпат в руде представлен реликтовым микроклином и альбитом.

Микроклин встречается в виде таблитчатых кристаллов размером от сотых долей до целых миллиметров.

Альбит представлен неправильными изометричными или удлиненными зернами, рзмеры которых варьируют от сотых долей до целых миллиметров в поперечнике. Иногда наблюдается полисентетическое строение. В альбите содержится значительное количество мелких газовожидких включений. Из вторичных минералов по нему развивается серицит.

Магнетит представлен мелкими зернами неправильной формы, образующими тонкие прожилки и гнездообразные выделения. Также встречается кристаллический магнетит в виде октаэдрических кристалликов, достигающих 1 миллиметра в поперечнике.

Гидроокислы железа являются продуктом окисления железосодержащих сульфидов. Встречается в виде прожилков, жил, налетов, корочек гнезд, псевдоморфоз по зернам пирита.

Актинолит встречается в виде игольчатых и спутанноволокнистых агрегатов размером от сотых долей до целых миллиметров в срастании с кварцем, хлоритом, серицитом. Вторичные изменения актинолита: эпидотизация, хлоритизация, реже флюоритизация и окварцевание.

Литература

- 1. Отчет о научно исследовательской работе «Установление влияния качества редкоземельных руд на показатели обогащения». Бишкек 1991г
- 2. Отчет о научно исследовательской работе « Разработать и внедрить методические рекомендации по повышению эффективности процесса вскрытия редкоземельных концентратов на основе использования приемов технологической минералогии. ВИМС Москва 1989г.
- 3. Пайдалуу казылып алынуучулардын кендери. Солпуев Т., Мусуралиев Ж., Сейдалиев А. Бишкек 2007жыл.